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Abstract: We aim at developing control strategies for constrained linear systems without
requiring full system controllability and observability. Given a fixed, potentially small set of
actuators and sensors, we first design a static affine-linear output feedback controller that
guarantees both the asymptotic stability of the closed-loop system and the adherence of the
steady state to a set of linear inequality constraints in the presence of interval-bounded, constant
inputs. Subsequently, the derived method is used to find the minimum number of actuators and
sensors with which one can fulfill such partial controllability and observability requirements. The
approach is applied to electrical power networks modeled as a set of linearly coupled oscillators.
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1. INTRODUCTION

Controllable systems can be steered from any initial state
to any desired state in finite time. Observable systems
similarly allow the reconstruction of the exact initial state
from finite time observations. While generally desirable,
these conditions may often not be achievable for large,
distributed systems, especially in situations with limited
communication resources. Such conditions might, for ex-
ample, arise in smart power systems through natural disas-
ters or cyber-attacks. To increase the operational resilience
of the network, we therefore aim at a weaker notion of
controllability and observability that is still useful but
allows for a strongly reduced number of actuator and
measurement devices. Apart from resilience benefits, this
also reduces the cost and effort for controlling the system
in normal operation.

In this work, we investigate minimal realizations of static
affine-linear output feedback controllers that guarantee
asymptotic stability for linear systems, i.e., that a steady
state of the system is approached for constant external
conditions. Instead of steering the final state to a single
target point, we define a larger target region and guarantee
that the steady state is within this region, without being
able to exactly identify the final state given the available
measurement information. The target region is defined
through a set of linear inequality constraints. The inputs
to the system, both the controlled ones as well as the
disturbance inputs, are assumed to be bounded. Contrary
to available control techniques based on invariant sets
(Dorea, 2009), we do not restrict the state trajectories to
be within the target region at all times. This may allow
to design a control law requiring much fewer resources.
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Nevertheless, our design target is reasonable in many
practical situations. E.g., in power systems, generator,
transformator, or line capacity constraints limit system
states and inputs, and short-term violations can often be
accepted if the steady states are admissible (Carne et al.,
2015; Sanz et al., 2017).

We thus address two tasks in this paper: 1) how to design
a static affine-linear output feedback controller that fulfills
the two above described conditions, and 2) how to select
the minimum number of actuators and sensors required to
achieve such a resilient design.

The first task is challenging due the simultaneous consid-
eration of asymptotic stability, steady state performance,
and bounded states and/or inputs. While traditional out-
put feedback H∞ synthesis methods already provide an
agreement between stability and performance (Petersen
and Tempo, 2014), they cannot straightforwardly inte-
grate state or input limits. This also applies to control
energy minimizing approaches (Li et al., 2018; Lindmark
and Altafini, 2018). When constraints are given, (stochas-
tic) model predictive control and multi-shooting methods
based on interior point optimization are often used to
compute control policies that minimize a determined cost
(Calafiore and Fagiano, 2013; Farina et al., 2016). How-
ever, such methods require complete state information and
are computationally demanding.

The second research question is an instance of the well-
known optimal input/output selection problem, an active
research subject in the context of controlling complex
networks (Liu and Barabási, 2016). Pequito et al. (2016)
describe an efficient algorithm to determine the structural
controllability of complex networks. Chang et al. (2018)
address minimal actuator selection to design a static state
feedback controller that ensures L∞-stability. In addition,
simultaneous minimal input/output selection via static
output feedback has been addressed by Nugroho et al.
(2018). Li et al. (2018) study the target controllability



of networked dynamical systems modeled as undirected
graphs, in which only a subset of network states are steered
towards a desired objective. However, all above proposed
methods do not consider steady state restrictions on inputs
or states. In a related work (Mora and Steinke, 2020), we
study input/output selection for constrained static linear
systems. The present paper extends these ideas to linear
time-invariant systems and also addresses the stability of
the resulting closed-loop system.

This paper is organized as follows. In Sec. 2, we provide a
formal problem statement. We present an efficient method
for the design of the desired controller based on linear and
semidefinite programming in Sec. 3, first for fixed sets of
controlled inputs and measurements. The approach is then
used to develop an iterative algorithm that minimizes the
number of required actuators and sensors in Sec. 4. In
Sec. 5, we demonstrate the resulting algorithms for two
illustrative power systems, before concluding in Sec. 6.

2. PROBLEM STATEMENT

We consider the linear time invariant system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)
(1)

with time t ∈ R≥0, state x(t) ∈ RN , potential control
inputs u(t) ∈ RL, potential measurements y(t) ∈ RP , and
matrices of appropriate dimensions. It is presupposed that
A is non-singular and that the system is fully controllable
and fully observable, if all inputs and outputs are used.

Now, let the set of possible control inputs u(t) be par-
titioned into the controlled inputs uc(t), for which we
will design a controller in the following, and the free
inputs uf(t), that are left free to be determined either
by other users, cooperative or malicious, by fixed external
conditions, or at random. The index set of the controlled
variables is denoted by C. Similarly, we partition the set
of possible measurements y(t) into the monitored mea-
surements ym(t), that are used as inputs to the control
law, and the unmonitored variables yu(t), that are not
required for the controller and may or may not be recorded
in practice. The index set of the monitored variables is
denoted by M.

The defined partitions of u(t) and y(t) allow to partition
B and C along their columns or rows as well, yielding

Bu(t) = Bcuc(t) + Bfuf(t),[
ym(t)
yu(t)

]
=

[
Cm

Cu

]
x(t).

Note that we do not require the pair (A,Bc) to be
(fully) controllable or the pair (A,Cm) to be (fully)
observable, i.e., Kalman rank conditions for controllability
and/or observability may not be fulfilled. Given the above
definitions, we choose the desired control law as an affine-
linear static output feedback

uc(t; S,w) = Sym(t) + w, (2)

with gain S ∈ R|C|×|M| and offset w ∈ R|C|. Hereby, |C| and
|M| denote the cardinality of C and M, respectively. The
control law shall guarantee the asymptotic stability of the
resulting closed-loop system, characterized by the matrix
Ã(S) = A + BcSCm. This implies that the system will

x2

x1

Fig. 1. From any (typically unknown) starting point (cir-
cles), the closed-loop system shall converge for fixed
external conditions to a steady state (crosses) that
may not be fully observable but is guaranteed to be
within a given convex polyhedron (shaded).

settle to a steady state for constant free inputs. According
to Lyapunov stability theory (Lyapunov, 1992), the system

ẋ(t) = Ã(S)x(t), is asymptotically stable if there exists a
positive definite matrix P ∈ RN×N for which

PÃ(S) + ÃT(S)P ≺ 0. (3)

Given range-limited constant values for the free inputs
uf(t), it is additionally desired that the resulting control
system fulfills a set of linear inequality constraints in
steady state. Let x, u, and y represent the steady state
values of x(t), u(t), and y(t), respectively. Moreover, let
u ∈ U , where U is a priori known and can be partitioned
as U = Uc × U f . We study the case where U is expressed
as a product of intervals, i.e., U = [u1, u1]× ...× [uL, uL].

The control target is then to maintain the steady state
vector x inside the convex polyhedron

X = {x ∈ RN : Ex ≤ b}, (4)

for all uf ∈ U f , where E ∈ RK×N and b ∈ RK , such as
shown in Fig. 1. Since we assume that A is non-singular,
steady state conditions imply that

x = −A-1(Bcuc + Bfuf) (5)

and that we can express Ex ≤ b equivalently in terms of
both uc and uf as

−EA-1(Bcuc + Bfuf) ≤ b. (6)

Now define Mm
c = −CmA-1Bc and Mm

f = −CmA-1Bf .
Equation (5) implies that ym = Mm

c uc + Mm
f uf and that

the steady state value of the controlled inputs uc can be
expressed based only on the steady state value of the free
inputs uf as

uc(uf ; S,w) = ŜMm
f uf + ŵ, (7)

with

Ŝ = (I− SMm
c )-1S, ŵ = (I− SMm

c )-1w. (8)

This representation of the control law has the advantage
of simplifying the design process as we will discuss below.
It also allows us to define the admissibility of the control
law non-recursively as follows.

Definition 1. (Admissible control law). The control law (2)
determined through S,w is steady state admissible if

∀uf ∈ U f : uc(uf ; S,w) ∈ Uc ∧ (9)

Λcuc(uf ; S,w) + Λfuf ≤ b. (10)

with Λc = −EA-1Bc and −EA-1Bf .

This allows us to formally state the optimization tasks we
aim to solve in this work.



Problem 1. For fixed sets C and M
find S,w of size corresponding to C and M
s.t. Ã(S) is asymptotically stable and

uc(uf ; S,w) is steady state admissible.

(11)

Problem 2. Find the set of controllers C and measurements
M that solves

min
C,M

|C|+ γ|M|

s.t. ∃S,w of size corresponding to C and M
that solve Problem 1.

(12)

The cost of placing a sensor is weighted by 0 ≤ γ ≤ 1
since it will typically be smaller than implementing a full
actuator. One could additionally incorporate into the ob-
jective the varying efforts and costs for controlling certain
elements or acquiring certain measurements. Instead of
just weighting the total number of controllers and mea-
surements we would then determine an individual weight
for each element separately. While we do not follow this
idea below, all algorithms could readily be adapted.

Remark 1. For singular A, the approach can be extended
via the Moore–Penrose pseudo inverse A+, if the kernel of
A is also in the kernel of Cm and E. The undetermined
dimensions in (5) are then irrelevant for the critical con-
ditions (9) and (10). This assumption is fulfilled, e.g., for
the power systems example below.

3. CONTROLLER DESIGN FOR FIXED C AND M

3.1 Guaranteeing Steady State Admissibility

A steady state admissible controller parametrized by S
and w has to fulfill the two conditions of Definition 1.
These are formulated using the all-quantor concerning the
free inputs uf . If used directly as side conditions in an
optimization problem to determine the best controller, this
would result in infinitely many constraints. In the follow-
ing, we reformulate the constraints such that they yield a
small set of linear conditions. According to Definition 1,
the transformed control law (7) must fulfillΛcŜMm

f + Λf

ŜMm
f

−ŜMm
f


︸ ︷︷ ︸

Λ̂(Ŝ)

uf +

[
Λc

I
−I

]
︸ ︷︷ ︸

F

ŵ −

[
b
uc
−uc

]
︸ ︷︷ ︸

l

≤ η

[
1
·
·

]
︸︷︷︸
v

,
(13)

where we introduced η ∈ R as an indicator of how far the
system is from violating the first steady state constraint,
1 is a vector of ones of suitable dimension, and · a vector
of zeros. In this context, a control law is steady state
admissible if η ≤ 0. Guaranteeing (13) for all uf ∈ U f can
be achieved by considering only the maximum of the left
hand side expression. Let K̂ = K + 2|C| be the number of

rows of Λ̂(Ŝ) and Nf = N − |C| the number of free inputs.

We can introduce a tight upper bound on Λ̂(Ŝ)uf via a

matrix H ∈ RK̂×Nf , whose entries fulfill

Hij ≥ Λ̂ij(Ŝ)ufj , ∀i = 1, ..., K̂, ∀j = 1, ..., Nf ,

Hij ≥ Λ̂ij(Ŝ)ufj , ∀i = 1, ..., K̂, ∀j = 1, ..., Nf .
(14)

The upper bound of Λ̂(Ŝ)uf is then given by H1. Condi-
tion (13) is thus equivalent to

H1 + Fŵ − l ≤ ηv. (15)

This allows us computing the controller with the minimum
possible value of η for given M and C via the following
linear program (LP)

min
η,H,Ŝ,ŵ

η

s.t. H1 + Fŵ − l ≤ ηv,
Hij ≥ Λ̂ij(Ŝ)ufj ,∀i = 1, ..., K̂, ∀j = 1, ..., Nf ,

Hij ≥ Λ̂ij(Ŝ)ufj ,∀i = 1, ..., K̂, ∀j = 1, ..., Nf .

(16)

We recover the original controller parameters by solving
for S and w

S = Ŝ(I + Mm
c Ŝ)-1, w = (I− SMm

c )ŵ. (17)

Remark 2. Note that, particularly in large scale applica-
tions, there may be several steady state constraints, i.e.,
rows of Λ = −EA-1B and corresponding entries of b in
condition (10), that are not violated by any realization of
u. Hence, when optimizing over C andM, we only take into
account the rows of Λ, for which a constraint violation is
possible. To this end, we check for the i-row of Λ whether
max (Λi,·u− bi) > 0 using the available bounds of u.

3.2 Guaranteeing Asymptotic Stability

Determining the control law uc(t; S,w) via the LP (16)
does not guarantee the stability of the resulting closed-
loop system, which can be shown by counterexample.
However, our experiments showed that asymptotically
stable configurations are obtained in many cases. This can
efficiently be checked by computing the maximum real part
of the eigenvalues of the closed-loop dynamics Ã(S).

In cases where the resulting control system is not stable
this can be enforced by solving

min
η,H,Ŝ,ŵ,S,w,P

η

s.t. conditions (14), (15), (17),

PÃ(S) + ÃT(S)P ≺ 0,

P � 0,

(18)

i.e., we use Lyapunov inequality (3) as an additional

constraint. Since equations (17) are non-linear if both Ŝ, ŵ
and S,w are free optimization variables, this optimization
problem is a bilinear matrix inequality (BMI). It is non-
convex, but can be optimized locally. We adapt the path-
following method proposed by Hassibi et al. (1999) and
iteratively improve the stability of the closed-loop system.
The method assumes that the actuators have limited
authority, and hence shift the eigenvalues of the system
only slightly in one step. This enables us to solve a
linearized form of (18) in each iteration as a convex linear
matrix inequality (LMI).

First, we take the solution of LP (16) as initial guess, ob-

taining the initial values Ŝ0, ŵ0. Using equations (17), we
then compute initial values for the control parameters S0

and w0. Next, we analyze the effect of small perturbations
around Ŝ0, ŵ0, S0, and w0 on equations (17). We thus
consider the substitutions

Ŝ = Ŝ0 + δŜ, S = S0 + δS,

ŵ = ŵ0 + δŵ, w = w0 + δw,
(19)

where the δ-terms represent such small perturbations. By
applying substitutions (19) on equations (17), we obtain
linear relations with respect to the perturbation terms, i.e.,



(I− S0M
m
c )δŜ = δS(I + Mm

c Ŝ0),

S0M
m
c δŵ = −δSMm

c ŵ0.
(20)

Although S0 yields initially an unstable closed-loop system
Ã0 = Ã(S0), we can still find a Lyapunov matrix P0 that
proofs its largest growth rate, which is determined by the
maximum real part over all eigenvalues of Ã0, here denoted
by ρ0. For small ε > 0 we can find P0 by solving the LMI

min
κ,P0

κ

s.t. I ≺ P0 ≺ κI,

ÃT
0 P0 + P0Ã0 � 2(ρ0 + ε)P0,

where the optimization variable κ ∈ R≥0 ensures that the
obtained P0 has the smallest condition number. We can
now linearize Lyapunov inequality (3) by introducing the
substitutions P = P0 + δP, ρ = ρ0 + δρ, and neglecting
second order perturbation terms. We obtain

ÃT
0 (P0 + δP) + (P0 + δP)ÃT

0 + P0BcδSCm+

(BcδSCm)TP0 � 2ρ(P0 + δP) + 2δρ δP0.
(21)

where δρ is fixed and chosen to be small. This results in
the following semidefinite program

min
η,H,δŜ,δŵ,δS,δP

η

s.t. conditions (14), (15), (20), (21),

P0 + δP � 0,

(22)

In case we obtain a steady state admissible solution, i.e.,
η ≤ 0, we update the control parameters according to
the obtained perturbations. This process is repeated iter-
atively until an asymptotically stable closed-loop system
is obtained. If LMI (22) is infeasible or η > 0, the process
is stopped and different sets for C andM are considered.

4. DETERMINING MINIMAL INPUT/OUTPUT SETS

To solve problem 2, i.e., determining the minimal feasible
sets C and M, we now use the above described controller
design procedure as a subroutine in a greedy hill climb-
ing approach. Thus, we proceed iteratively from initially
empty sets C and M, adding one element at a time.
Since we want to measure the optimization progress also
for combinations C and M for which no controller can
be found that satisfies the desired design properties, we
extend the minimization objective to

J(C,M) = |C|+ γ|M|+ µmax(η, ρ, 0), (23)

where η corresponds to the steady state admissibility
indicator defined in (13), and ρ to the maximum real part

of the eigenvalues of Ã. µ > 0 is a weighting factor that
penalizes the infeasibility of C and M. We choose µ � 1
to steer the iteration quickly towards feasible solutions.

In each iteration we compute the objective value (23) for
all sets M′ or C′ that can be generated by adding one
element to either M or C. We then choose the step which
yields the largest improvement of the objective value (23).
As soon as the sets of controllers and measurements are
feasible, we stop the iteration.

For large scale applications, the design of a stabilizing
controller for each instance of C and M via the approach
described in Section 3.2 is computationally demanding.
For this reason, we recommend to grow C and M first

by solving LP (16) until η ≤ 0 is reached and only then
optimize stability. Moreover, if there is a steady state
admissible controller among the candidates that implies
a stable close-loop system without additional action, we
can take this one and avoid further efforts.

Remark 3. It is well known that the solution of this greedy
approach depends on the selection of the starting point,
which also affects the total computation time. Starting
with empty sets aims at selecting the most important
controllers and measurements during the first iterations.
In previous work (Mora and Steinke, 2020), we show that
for a case corresponding to −CA-1B = I, which can
be shown to be practical at least for some examples,
the minimal sets C and M fulfilling a weaker feasibility
condition can be computed by solving a single mixed-
integer linear program. While the obtained sets may be
slightly too small, they can be a good starting point for
the hill climbing procedure, leading to faster execution.

5. APPLICATION TO LINEAR POWER SYSTEMS

In this section, we show the potential of the above devel-
oped algorithms to design wide-area controllers for electri-
cal power systems. After a brief description of the dynam-
ics of power systems in the linear regime, we present the
designs for 1) an introductory microgrid and 2) a modified
version of the standard IEEE 57 bus network.

5.1 Linear Power Grids

We analyze electrical networks with n electrical buses
connected by l transmission lines under the common DC
power flow assumptions (Kundur et al., 1994). The power
grid with integrated primary control action can then be
modeled around its nominal operating point as a network
of coupled oscillators subject to the linear swing equation

Jθ̈(t) + Kθ̇(t) + BIθ(t) = p(t), (24)

where θ(t) ∈ Rn symbolizes the vector of voltage angles,
and p(t) ∈ Rn the vector of set points for the active power
injections. We assume that both the inertia J ∈ Rn×n
and primary control K ∈ Rn×n matrices are diagonal.
Moreover, it is presupposed that J � 0 and K � 0.
The coupling matrix BI ∈ Rn×n is given element-wise as
BI,jk = −bjk if j 6= k, and BI,jj =

∑
k bjk, with bjk being

the susceptance of the line connecting buses j and k.

By defining x(t) =
[
θT(t) θ̇

T
(t)

]T
and u(t) = p(t), the

state space representation of (24) is given by

ẋ(t) =

[
· I

−J-1BI −J-1K

]
︸ ︷︷ ︸

A

x(t) +

[
·

J-1

]
︸ ︷︷ ︸

B

u(t),
(25)

where we use · to denote a matrix of zeros with suitable
dimensions. Quantities like the active power injected by
generators or consumed by loads, the nodal frequencies,
and the line power flows are potential measurements,
that can all be extracted linearly from x(t). The nodal
injections will be limited above and below by the technical
capabilities of the connected generator or load. Similarly,
line power flows and the grid frequency are typically
subject to upper and lower bounds. This reasoning lets
us define the structure of the linear inequalities Ex ≤ b.



5.2 Introductory Microgrid

The considered microgrid consists of 3 generators supply-
ing a demand of 5 MW. Fig. 2a shows the topology of the
grid together with the capacity limits of each transmission
line and each generator/load. The generator located at bus
4 provides primary reserve, with a droop of 4 MW/Hz.
Nodal frequency deviations must not exceed ±0.1 Hz.

We first assume that all transmission lines have a power
transfer capacity of ±10 MW, which is adequate to avoid
grid limitations. It is presupposed that both the nodal
power injections and the line flows are in the set of poten-
tial measurements. Nodal frequencies are not monitored.
In this scenario, it is sufficient to control the generator lo-
cated at bus 4 based on the power flowing between buses 2
and 3, in order to fulfill the steady state requirements. Note
that the system is not fully controllable and observable,
since both the observability and the controllability matrix
have insufficient rank. We also simulate the dynamics of
the network assuming that the free control inputs are
manipulated at fixed time intervals, uniformly at random,
and low-pass filtered. Fig. 2b shows how the resulting
controller maintains the frequency deviations within the
desired region in steady state, while occasional violations
during the transition period can be observed.

[0, 1] MW [0, 1] MW

[0, 10] MW

[-10, 10] MW [-10, 10] MW [-10, 10] MW

4 MW/Hz

| f - f0 | < 0.1 Hz

1 2 43

[-5, -5] MW

(a)

(b)

Fig. 2. Simple microgrid without active constraints on
the transmission lines. (a) The gray boxes represent
potential locations for the elements of C and M. The
selected controllers and sensors correspond to the red
and green boxes, respectively. (b) Top: External input
uf(t), i.e., trajectories of the uncontrolled generators
1 (blue) and 2 (red). Bottom: Resulting transient
frequency deviations for all 4 buses.

Next, we constrain the power flowing between buses 2
and 3 to be within the interval [−1, 1] MW. The resulting

minimum sets C and M are shown in Fig. 3. We see that
in this case, the injection at bus 2 must additionally be
controlled. Fig. 3 also presents an alternative steady state
solution. When controlling the injection at bus 1 instead
of the injection at bus 2, the solution of LP (16) is initially
steady state admissible, but unstable in closed-loop. The
system can, however, be stabilized with only one iteration
of the path-following algorithm. Note that during the
hill climbing we rarely required the stability improvement
procedure. When screening the possible updates of C
and M with the fast LP approach yielded steady state
admissible candidates, at least one of them was typically
already closed-loop stable.

[0, 1] MW [0, 1] MW

[0, 10] MW

[-10, 10] MW [-1, 1] MW [-10, 10] MW

4 MW/Hz

| f - f0 | < 0.1 Hz

1 2 43

[-5, -5] MW

Fig. 3. Effect of adding an active constraint to the power
flowing between buses 2 and 3. The colored frames
denote alternative equivalent optimal solutions.

5.3 IEEE 57 bus test case

We now design the controller for the modified IEEE 57
bus power system, shown in Fig. 4a. It has 28 generators,
29 loads, and 80 transmission lines. The topology of the
power system, the nominal load values, and generator
capacities for producers located at buses {1, 2, 3, 6, 8, 9, 12}
were taken from Al-Roomi (2015). The capacity of the re-
maining generators are drawn from a uniform distribution
within the interval [0, 150] MW, and the capacity of the
transmission lines is set to ±100 MW. It is also presup-
posed that the power injections as well as the line flows
are available as potential measurements. In addition, we
admit 5% of uncertainty for each load in both directions.
The maximum allowed frequency deviation is ±0.2 Hz.

The obtained optimal sets for controlling this network are
shown in Fig. 4a. We obtain that 12 generators must be
controlled based on 3 line flow measurements in order to
fulfill the two design specifications. Next, we simulate the
time behavior of the system, manipulating the set-points
of the non-controlled generators and loads as before, at
fixed time intervals according to a uniform distribution
and applying low-pass filtering. Fig. 4b shows that the
local frequency deviations and the line flows remain within
the desired region throughout the simulation time.

6. CONCLUDING REMARKS

The theoretic framework and the algorithms developed in
this work allow to design a static output feedback con-
troller that forces the steady state to fulfill a set of linear
inequalities for interval-bounded, constant inputs and dis-
turbances while keeping the resulting closed-loop system
stable. While the stabilization of the system is typically
achieved after few iterations of the path-following method,
a convex stability condition in terms of the transformed
control parameters Ŝ and ŵ should be investigated in the
future.



(a)

(b)

Fig. 4. (a) Minimum sets C and M for the modified
IEEE 57 bus power system. The location of the
selected controllers and sensors is marked in red
and green, respectively. (b) Time behavior of the
transient frequency deviations (top) and the line flows
(down) when the remaining non-controlled generators
and loads are manipulated randomly within their
operating limits. The area in gray encloses the time
trajectories of all nodal frequencies and all line flows,
the dashed lines mark their allowed range.
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