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Abstract—We determine affine-linear control policies for linear
power systems that are robust against variations of nodal power
injections. The paper presents a novel way to compute such
policies with a minimal number of controller and sensor devices
by solving a single mixed-integer linear optimization problem.
The developed algorithm is then applied to a demonstrative mi-
crogrid with 4 buses as well as to a modified version of the IEEE
30 bus power system. We show that sparse control realizations
with minimal configurations of controllers and measurements are
obtained efficiently for both systems.

Index Terms—Controllability, observability, optimization,
power flow, resilience

I. INTRODUCTION

The integration of distributed energy resources and electric
vehicles into the power grid requires new power flow control
methods to guarantee feasible grid operation in the presence
of increased supply and demand uncertainty. In this context,
we aim to control some active power injections such that
the feasibility of the resulting power flow is guaranteed for
all possible values of the remaining non-controlled injections.
The control set points are computed for each situation based
on the information provided by a given set of measurement
devices. Assuming a linear power flow model and constraining
the control policy to be affine-linear, we then ask: What is
the minimum number of power injections to be controlled
based on the smallest number of measurements so that such
a control policy can be found? Obtaining sparse but robust
control policies is beneficial for reducing communication and
computation efforts of the control system. It thereby saves
costs and installation efforts. Moreover, if the minimal set of
controllers and measurements is protected especially well, fea-
sible system operation can be guaranteed even if the remaining
elements are damaged by natural disasters or compromised by
cyber-attacks. The approach would then also help improving
power grid operational resilience.

The design of the desired sparse affine-linear control policy
can be understood as an instance of the optimal input/output
selection problem, also known as optimal actuator/sensor
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placement problem [1]. Such kind of optimization problems
have recently gained importance in the analysis of stability,
controllability, and observability of complex networks. How-
ever, current theoretical methods for solving the input/output
selection problem are mostly based on the topology of the
network only, i.e., they can provide optimal solutions as long
as the studied system has no state or input/output restrictions.

On the other hand, several approaches have been proposed
for power flow analysis under interval uncertainties during
the last decade, where most of them are robust power flow
formulations based on affine interval arithmetic [2]–[5]. In ad-
dition, an approach for optimal robust power flow with a linear
power flow model is presented in [6]. Besides generator set
points, they also compute the primary control parameters of a
given set of generators to achieve feasible grid operation when
the injections of other set of producers and consumers are
uncertain. The minimization of the required controller/sensor
sets is not considered in any of these works.

This contribution incorporates the optimal selection of ac-
tuators and sensors into robust power flow control. It extends
the idea proposed recently in [7], where a greedy hill climbing
approach is used to find the minimal possible set of controllers
and sensors for an affine-linear control policy. In this paper,
we show that the design of such a policy can also be posed
as a mixed-integer linear program (MILP). This leads to a
more efficient approach. Moreover, the MILP can be solved
to global optimality or stopped early with provable sub-
optimality guarantees.

The rest of the paper is structured as follows: The linear
power flow model utilized for our numerical experiments is
presented in Section II. A formal problem statement is then
given in Section III. In Section IV, we develop a mixed-integer
linear program that minimizes the number of controllers and
sensors required to implement the affine-linear control policy.
In Section V, we apply the proposed algorithm to 1) a simple
microgrid consisting of 4 buses connected in line topology and
2) a modified version of the IEEE 30 bus test case. Concluding
remarks and an outlook for future research are provided in
Section VI.

II. LINEAR POWER FLOW

We analyze an electrical network with N electrical buses
connected by T transmission lines under the common DC
power flow assumptions [8]. The voltage phase angles θ ∈ RN



determine the nodal active power injections pI ∈ RN and the
active power line flows pF ∈ RT as

pI = BIθ, pF = BFθ, (1)

where the entries of BI ∈ RN×N and BF ∈ RT×N are defined
element-wise as BI,jk = −bjk if j 6= k, BI,jj =

∑
k bjk and

BF,jk = bjk, with bjk the susceptance of the line connecting
buses j and k.

Without loss of generality, we assume that exactly one
generator or load is connected to each bus, with an externally
defined active power set point xi. If the sum of the set points
in the grid is not balanced, a droop-based primary control
scheme [8] adjusts power injections pI under adaptation of
the frequency to achieve this balance,

pI = x− k∆ω. (2)

Here, k ∈ RN represents the vector of droop constants, ki ≥ 0
and

∑
i ki > 0, and ∆ω ∈ R the frequency deviation with

respect to its nominal value.
This common setup implies that the measurable quantities

pI, pF, and ∆ω are linearly determined by the controllable
quantities x. The kernel of the Laplacian matrix BI contains
only the constant vectors for connected graphs, that is, a
constant shift of the phase angles has no impact on pI. We thus
fix θ1 = 0 and delete the first column of BI to obtain B̃I. The
remaining dimensions of θ are denoted by θ̃. We similarly
reduce BF to B̃F. The image of B̃I moreover contains all
vectors with balanced nodal injections. To handle unbalanced
set points x, we add k as the last column. This lets us compute
for all x with · denoting zero entries pI

pF
∆ω

 =

B̃I ·
B̃F ·
· 1

[ θ̃
∆ω

]
=

B̃I ·
B̃F ·
· 1

 [B̃I k
]-1
x. (3)

In real systems the nodal injections pI will be limited above
and below by the technical capabilities of the connected
generator or load. Valid set points x might be restricted to
smaller intervals than the pI, to leave some space for power
generation scheduled by the primary controller. Similarly, line
power flows pF and the frequency deviation ∆ω are typically
subject to upper and lower bounds.

III. PROBLEM STATEMENT

We represent the linear power flow presented in the previous
section as the following set of linear (in)equalities:

Ax ≤ b, (4a)

y = Mx, (4b)

x ≤ x ≤ x, (4c)

with state x ∈ RN , measurements y ∈ RL, and parameters
A ∈ RK×N , b ∈ RK , and M ∈ RL×N . The vector x entirely
determines the state of the system and is subject to lower and
upper bounds x and x. We partition x into the controlled
variables xc, for which we will design a control policy in
the following, and the free variables xf that are left free to

be determined either by other users, cooperative or malicious,
by fixed external conditions such as, e.g., the weather, or at
random. The index set of the controlled variables is denoted
by C.

In Eq. (4b) it is assumed that a set of possible measurements
y is related linearly to the system state, with matrix M
being presupposed to have full column rank. The set of
measurements y can be partitioned into the measured variables
ym, which are used as inputs to the control policy, and the
unmonitored variables yu, which are not required by the
control center and may or may be not recorded in practice.
The index set of the monitored variables is denoted byM The
defined partitions of x and y allow also to partition matrices A
and M along their columns and rows, yielding the equivalent
representation

Acxc + Afxf ≤ b, (5a)

ym = Mmx, (5b)[
xc

xf

]
≤
[
xc

xf

]
≤
[
xc

xf

]
. (5c)

In this work, we address the design of an affine-linear
control policy

xc(y
m) = Sym +w, (6)

with static parameters S ∈ R|C|×|M| andw ∈ R|C|. |C| denotes
the number of controlled variables and |M| the number of
measured quantities. Note that we consider only controls for
the steady-state of the system. We do not examine whether and
how it is possible to get there from arbitrary initial positions.
The desired policy has to compute the value of the controlled
variables based on the information provided by ym and has to
guarantee that the set of linear inequality constraints (4a) are
fulfilled for all possible realizations of the free variables xf .
This motivates the following definition:

Definition 1: A control policy parametrized by S and w is
admissible if

∃S,w : ∀xf ∈ [xf ,xf ] : xc(y
m) ∈ [xc,xc] ∧

Acxc(y
m) + Afxf ≤ b ∧

xc(y
m) = Sym +w,

(7)

with ym = Mmx.
Subsequently, we want the admissible control policy to

be sparse, i.e., the smallest possible number of entries of
x should be manipulated based on the information provided
by the smallest possible number of measurements. This is
equivalent to finding the minimum possible realization of
sets C and M that yields an admissible control policy. The
sparsest realization of (6) is then the solution of the following
optimization task:

min
C,M

|C|+ γ|M|

s.t. C and M allow for an admissible control policy.
(8)

The cost of placing a sensor is weighted by 0 ≤ γ ≤ 1 since
it will typically be smaller than implementing a full actuator.
Notice that one could alternatively weight the cost of placing



each control and sensor device separately. While we do not
follow this idea below, the algorithm presented in next section
can be straightforwardly be adapted.

IV. ALGORITHM

In this section we develop a MILP for addressing opti-
mization task (8). The key idea behind the algorithm is to
split the problem into two parts: We first describe conditions
for an admissible control policy Ŝ ∈ RN×L, ŵ ∈ RN that
could be used if all nodes are controlled and all measurements
are available. We then contrast this with the control policy
S̃ ∈ RN×L that yields the identity x = S̃Mx, which implies
that all variables are free. Since we assume M to have full
column rank, i.e., the state can be reconstructed from all
measurements, the second policy S̃ can be pre-computed as
the pseudo-inverse of M. We then use this policy to constrain
the structure of Ŝ in terms of binary decision variables that
encode the selection of controller and measurement devices.
The actually applied S is finally determined by the partition
of the resulting Ŝ that corresponds to the obtained set of
controllers and measurements.

A. Admissibility

According to Definition 1, control policy Ŝ, ŵ must fulfillAŜM

ŜM

−ŜM


︸ ︷︷ ︸

Â(Ŝ)

x+

A
I
−I


︸ ︷︷ ︸
Âw

ŵ ≤

 bx
−x


︸ ︷︷ ︸

b̂

,
(9)

in order to be admissible. Looking at the above inequalities
there is an important aspect to highlight: The value of Ŝ is
determined by the maximum effect of any realization of x
on each constraint. For a fixed Ŝ, the maximum effect of x
on inequality (9) can be computed element-wise by using the
lower and upper bounds of x in the following manner:

Hij =

{
Âij(Ŝ)xj Âij ≥ 0,

Âij(Ŝ)xj else
, ∀i ∈ I, ∀j ∈ J , (10)

with the index sets I = {1, ...,K + 2N} and J = {1, ..., N}.
Thus, the upper bound of Â(Ŝ)x is given by H1, where 1
is a vector of ones with appropriate dimension. Note that the
above piecewise expression can also be formulated as a set of
linear inequality constraints. To do this, the entries of H must
fulfill

Hij ≥ Âij(Ŝ)xj , ∀i ∈ I, ∀j ∈ J ,
Hij ≥ Âij(Ŝ)xj , ∀i ∈ I, ∀j ∈ J .

(11)

B. Structural Constraints

Now consider the binary decision variables uc ∈ {0, 1}N
and um ∈ {0, 1}L indicating C and M, respectively. I.e.,
the entry xj is controlled iff ucj = 1 and the variable yk is
measured iff umk = 1. Moreover, let Ŝ·k be the k-th column
of Ŝ, with k ∈ K and K = {1, ..., L}. In addition, let Ŝj· be
the j-row of Ŝ. We also consider analogous definitions for the
rows and columns of S̃. If a variable xj is selected as free, then

Ŝj· has to match S̃j· and ŵj must be zero. Otherwise, such
entries are determined by the optimization algorithm between
a pre-defined minimum S ≤ 0 and maximum S ≥ 0 value
for Ŝ, and between x and x for ŵ. This leads to the linear
inequalities

S uc + S̃·k ◦ (1− uc) ≤ Ŝ·k, ∀k ∈ K,
Ŝ·k ≤ S uc + S̃·k ◦ (1− uc), ∀k ∈ K,

(12)

and
x ◦ uc ≤ ŵ ≤ x ◦ uc. (13)

Hereby, the operator ◦ symbolizes the Hadamard product.
Moreover, if variable xj is controlled and the measurement
yk is not used for its computation, then Ŝjk should be zero.
This AND condition can be expressed as

S(1− ucj + umk) ≤ Ŝjk, ∀j ∈ J , ∀k ∈ K,
Ŝjk ≤ S(1− ucj + umk), ∀j ∈ J , ∀k ∈ K.

(14)

C. Full problem

Putting these results together allows us to find the minimum
possible realization of uc and um, for which an admissible
affine-linear control policy can be computed, via the MILP

min
uc,um

ŵ,Ŝ,H

‖uc‖1 + γ‖um‖1

s.t H1 + Âwŵ ≤ b̂,
Hij ≥ Âij(Ŝ)xj , ∀i ∈ I, ∀j ∈ J ,
Hij ≥ Âij(Ŝ)xj , ∀i ∈ I, ∀j ∈ J ,
S(1− ucj + umk) ≤ Ŝjk, ∀j ∈ J , ∀k ∈ K,
Ŝjk ≤ S(1− ucj + umk), ∀j ∈ J , ∀k ∈ K,
S uc + S̃·k ◦ (1− uc) ≤ Ŝ·k, ∀k ∈ K,
Ŝ·k ≤ S uc + S̃·k ◦ (1− uc), ∀k ∈ K,
x ◦ uc ≤ ŵ ≤ x ◦ uc.

(15)

The solution of MILP (15) is then used to determine the
realization of the parameters S and w by extracting those
partitions that are indicated by uc and um as

xc = Ŝc
m︸︷︷︸
S

ym + ŵc︸︷︷︸
w

.
(16)

In the next section, we illustrate the applicability of the
proposed approach for two exemplary power systems.

V. NUMERICAL EXPERIMENTS

The algorithm developed in IV is now applied to find
the minimal configuration of controllers and measurements
required to design the affine-linear control policy for two
exemplary power systems. We first demonstrate our setup and
typical effects on a simple microgrid of 4 buses connected in a
line. Subsequently, a modified version of the IEEE 30 bus test
case is addressed. An i5 notebook with 8 GB of RAM was
used when performing the MILP optimization for both power
systems. We use γ = 0.5 for solving (15) in all experiments.



A. Simple microgrid
The considered microgrid consists of three generators sup-

plying a demand of 5 MW. Fig. 1 gives the topology of the
grid together with the capacity limits of each transmission line
and each generator and load. The generator located at bus 4
provides primary reserve, initially with a droop of 12 MW/Hz
and later with 4 MW/Hz. The maximum allowed frequency
deviation is ±0.1 Hz. We first assume that all transmission
lines have a power transfer capacity of ±10 MW, which is
adequate to avoid grid limitations. In scenario (d) we add an
active constraint in the middle line.

In scenario (a) where only the measure of the power
injections is available, it is sufficient to set the power produced
by the large generator located at bus 4 for achieving feasible
grid operation. The remaining injections can be chosen freely.
Note that no additional measurement devices are required.

In scenario (b) we reduce the droop of the generator at bus
4 to 4 MW/Hz. This leads to the additional measurement of
the power injections at buses 1 and 2. Although the power
injections at buses 1 and 2 can be chosen arbitrarily, they
must be monitored so that the power produced by the generator
located at bus 4 can be set appropriately to balance the system
within the given frequency tolerance.

In scenario (c) the measurement of the line flows is added
to the set of potential measurements. In this case, only the
measure of the line flow between buses 2 and 3 is required
for controlling the set point of the generator at bus 4. Notice
that since the load is fixed, the measurement of the line flow
between buses 3 and 4 would be equally informative.

In scenario (d), we constrain the capacity of the transmission
line connecting buses 2 and 3 to the interval [−1, 1] MW. This
possibly represents an active grid constraint if the generators
at buses 1 and 2 produce at maximum power. The resulting
optimal control configuration consists of placing controller
devices at buses 1 and 4 and a measurement device at bus
2. Equivalently, the set point of the generator located at bus
2 could be controlled and the injection at bus 1 measured. In
addition observe that the measurement of the power flow on
the middle line or on the right line would be valid as well.

We show through these simple examples that algorithm (15)
yields sparse configurations of sensors and controllers for each
tested situation. While in this case the control realizations
could also be verified manually, the situation may become
much more complex in larger grids. In Table I we present
the solver times for the above scenarios and contrast them
with an efficient implementation of the hill climbing approach
proposed in [7]. Note that in all cases the proposed MILP
performed at least more than 2 times faster than the hill
climbing optimization procedure.

Scenario MILP (ms) Hill climbing (ms)
(a) 77 160
(b) 78 233
(c) 97 277
(d) 101 330

TABLE I: Total solver times for the simple microgrid.

[0, 1] MW [0, 1] MW

[0, 10] MW

[-10, 10] MW [-10, 10] MW [-10, 10] MW

12 MW/Hz

| f - f0 | < 0.1 Hz

[-5, -5] MW

x1 x2 x3 x4

(a) Mm = ∅;S = ∅;w = 4.2.

[0, 1] MW [0, 1] MW

[0, 10] MW

[-10, 10] MW [-10, 10] MW [-10, 10] MW

4 MW/Hz

| f - f0 | < 0.1 Hz

x1

[-5, -5] MW

x2 x3 x4

(b) Mm =

[
1 0 0 0
0 1 0 0

]
;S = −

[
1 1

]
;w = 4.6.

[0, 1] MW [0, 1] MW

[0, 10] MW

[-10, 10] MW [-10, 10] MW [-10, 10] MW

4 MW/Hz

| f - f0 | < 0.1 Hz

[-5, -5] MW

x1 x2 x3 x4

f - f0

(c) Mm =
[
1 1 0 0

]
;S = −1;w = 4.6.

[0, 1] MW [0, 1] MW

[0, 10] MW

[-10, 10] MW [-1, 1] MW [-10, 10] MW

4 MW/Hz

| f - f0 | < 0.1 Hz

[-5, -5] MW

x1 x2 x3 x4

(d) Mm =
[
0 1 0 0

]
;S = −

[
0
1

]
;w =

[
0
4.6

]
.

Fig. 1: Minimal sets of controllers and measurements for a
simple microgrid of 4 buses connected in line topology. For
each test scenario, the measurement set and the realization of
the optimal affine-linear control policy are presented. The gray
squares represent potential controller/measurement locations.
The selected controllers and measurements are highlighted in
red and green, respectively. Scenarios (a) and (b) have only
the power injections as available measurements, whereas the
line flows may also be measured in (c) and (d). For scenarios
with multiple, equivalent optimal solutions, the colored frames
denoted alternative optimal solutions. The rationale behind the
scenarios is as follows: In (b) the primary control droop is
reduced compared to (a). In (c) we allow additionally for line
measurements. In (d) we reduce the transfer capacity of the
middle link to form a potentially active constraint.



B. IEEE 30 Bus Test Case

We now design the control policy for a modified version
of the IEEE 30 bus test case, shown Fig. 2. This network
consists of 6 generators, 20 loads, and 41 transmission lines.
The topology of the power system, the nominal load values, the
capacity of the lines and the generators located at buses {1, 2}
were taken from [9]. We assume that the remaining generators
have a capacity of [0, 50] MW. We also presuppose that each
generator can be scheduled in the range of 10%-90% of its
available capacity. In addition, we admit 10% of uncertainty of
each load in both directions. The maximum allowed frequency
deviation is taken as ±0.1 Hz. In scenario (a) we only consider
the nodal power injections as potential measurements. We
obtain a set of 3 controller and 7 measurement devices. In sce-
nario (b) we include the line flows as potential measurements.
The solution of MILP (15) reduces the number of required
measurements from 7 to 3 while keeping the same controller
set obtained in scenario (a). The realization of the affine-linear
control policy for scenarios (a) and (b) is not provided due to
space limitations.

When performing the MILP optimization for scenario (a),
the optimal solution was computed in about 18 s. For scenario
(b), however, the optimal solution was computed in 224 s
approximately.

VI. OUTLOOK

The algorithm developed in this work extends the approach
presented in [7] to design sparse affine-linear control policies
for linear power systems. Although we obtained satisfying
solver times for the above exemplary power networks, the
efficiency of the proposed algorithm has still to be improved
in order to address large scale applications.
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Fig. 2: Minimum sets C andM for the modified IEEE 30 bus
power system. The location of the selected controllers and
sensors is marked in red and green, respectively. In (a) only
the injection power injections can be measured. (b) A sparser
solution is obtained if the line flows are included into the set
of potential measurements.


