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Abstract—Power oscillation damping is an important task for
maintaining electric grid stability and reliability. It is realized via
several control mechanisms that are traditionally tuned manually
at installation time, often with the help of dynamic simulations
of the full grid. With the increasing number of Decentralized
Energy Resources (DER) and variable renewable energies, both
the grid structure as well as generators’ parameters are subject
to frequent changes, turning manually tuned controllers sub-
optimal and existing dynamic models invalid. We therefore
develop an automated controller tuning approach for the core
mechanism of droop frequency control. It runs decentrally on
each generator or in each control area without using an a priori
dynamic model of the grid. Instead, we use data-based system
identification to estimate a dynamic model of the remaining grid
and combine it with local parameters to optimally adapt the
local droop value. In simulation experiments, the algorithm is
compared against an optimization approach, which has complete
knowledge of the full grid configuration, and a heuristic that
simulates manual tuning. In the considered setup, our approach
reduces frequency oscillations by 15% compared to simulated
manual tuning and comes within 8% of the all-knowing central
approach.

Index Terms—Frequency control, Optimal control, Automatic
control

I. INTRODUCTION

Power oscillations are an intrinsic feature of systems com-
posed of weakly coupled generators [1]. They are excited
by changes in the power demand, generator outages, or
grid reconfigurations. Oscillations can lead to instabilities or
even damage grid equipment in extreme cases, and several
control mechanisms are typically employed to dampen them
as quickly as possible. Among these are generators’ droop
frequency control coupled with their inertia, Power System
Stabilizers (PSS), and the suitable control of additional hard-
ware such as Static VAR Compensators [1].

The controllers need to be tuned for specific grid config-
uration, that is characterized by the grid’s topology and the
parameters of the connected elements. A common approach
for controller tuning is to manually adjust parameters based
on dynamic grid simulations at installation time or when
the grid configuration changes significantly. However, this
approach is time-consuming and yields optimal results only
for the grid configuration at tuning time. While in the past
many power grid configurations were constant over extended
time periods, today’s many new installations of DERs and

renewable generators lead to frequent changes. This makes
automated tuning methods a valuable tool for grid adaptation.

Several methods for automated oscillation damping have
been developed. Many solutions require new control structures,
e.g., [2]–[4]. Such approaches are difficult to implement in
systems with a large amount of existing equipment. Another
line of work tries to tune existing control structures, e.g., the
droop frequency controllers, such that oscillations are opti-
mally damped [5]–[7]. These approaches require a dynamic
model of the whole power grid. However, exact dynamic
models are difficult to obtain and to maintain in frequently
changing environments.

In this work, we therefore propose a decentralized data-
driven tuning algorithm for droop frequency control. It is
decentralized, meaning that it is executed locally and indepen-
dently on each generator or in each control area in a continuous
manner. It is data-driven, meaning that a dynamic model of
the remaining grid as seen from one local agent is estimated
using data-based system identification. The algorithm then
combines the estimated model with local parameters to obtain
optimal local droop gains. In simulation experiments, we
show that the proposed approach yields gain values whose
performance in oscillation damping in the whole power grid
is superior to heuristic manual tuning and not much worse
than a central optimization approach that has access to an
up-to-date dynamic model of the full grid as well as all
possible measurements. Our approach can be implemented
on individual devices and can integrate changes of the grid’s
configuration whenever they occur. It is thus a realistic step
to improve oscillation damping in practice.

The remainder of this paper is structured as follows. Section
II defines the employed power system model and states our
goal. The proposed algorithm is then presented in Section III.
In Section IV we evaluate it in comparison with a central
optimization baseline and a heuristic manual tuning approach.
We conclude the paper in Section V.

II. POWER SYSTEM MODEL & PROBLEM STATEMENT

We now present the employed power system model includ-
ing the droop frequency control mechanism. Then, the problem
addressed in this work is defined mathematically.
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Fig. 1: Block diagram of a control area i.

A. Power System Modeling

We represent the dynamics of the power system via the
interaction of N coupled local control areas. Each local area
is modeled as a linear dynamical system that relates the local
active power demand and the power transfer from other areas
to the local power generation and the local system frequency
[1]. Since we are interested in oscillations around a working
point, we only consider variations of these signals in the
following. An overview of the model is given in Fig. 1.

We consider a local control area as a set of power generators
strongly coupled due to physical proximity and/or grid’s
topology. It is assumed that the frequency of all generators
in the control area is identical throughout. This allows us
to model the control area as a single large power generator
with aggregated capacity equal to the sum of each individual
generator. For local control area i, the relation between the
generator’s active power set point and its actually generated
mechanical power ∆PTi is described by the first order transfer
function GHTi(s) = 1

THTis+1 . Hereby, THTi is an aggregated
time constant for the power generation process. We assume the
power set point of the control area scheduled by the secondary
or tertiary controller, denoted by ∆Pci, constant to zero. The
transfer function Gpi(s) =

Kpi

s represents the behavior of the
electrical generator, relating the local power balance to the
local system frequency ∆fi. The generator is (de-)accelerated
by the balance of the load ∆Pdi, the incoming power from
connected control areas ∆Ptiei, and the local power generation
∆PTi. The gain Kpi is inversely proportional to the inertia Hi

of the control area. The model considers that each local area
is equipped with a droop frequency controller, i.e., a static
negative feedback with the gain Ki, that determines the change
in the power production for a given frequency deviation. The
gain Ki is typically denoted in terms of its inverse value, the
droop di. Typical limitations for the droop values are [1, 10]%
of the nominal frequency divided by the nominal capacity [8].

Control areas i and j are connected by a tie-line modeled via
transfer function Gijtie(s) =

2πLij

s , which relates the inter-area
difference of the frequency to the active power flow through
the tie-line. Lij is the synchronizing coefficient of areas i and
j and is inversely proportional to the line reactance.

B. Problem Statement

The goal of our algorithm is to damp frequency oscillations
in the power grid by tuning the droop gains di locally in each
area.

A local measure of frequency oscillations is the time-
variance of the frequency deviations,

φi =
1

T − 1

T∑
t=1

(∆fi,t − µi)2, (1)

with ∆fi,t being the frequency of control area i sampled at
time step t, T the number of collected samples, and µi being
the average of the frequency of control area i over the T
samples. The performance of a set of droop gains for all areas
is then evaluated via the average variance in all areas, i.e.,

φ =
1

N

N∑
i=1

φi. (2)

Both measures are dependent on the excitation signal,
that is, the load signal applied to the system, and are only
comparable for identical setups. We use square wave excita-
tions in the following. To remove the stationary control error
and amplify small frequency oscillations, we normalize the
frequency samples before computing the time-variance. Let
T = {0, ε, 2ε, . . . , (T − 1)ε} be the set of time steps when
the frequency deviation signal was sampled, with ε being
the sampling period. We define S ⊂ T as the set of time
steps when a change in the input value occurred during the
frequency sampling. The normalized frequency is then given
by

∆f̂i,t =
∆fi,t − 1

|σ(t)|
∑
τ∈σ(t) ∆fi,τ∣∣maxτ∈σ(t) ∆fi,τ −minτ∈σ(t) ∆fi,τ

∣∣ , (3)

where σ(t) = {τ ∈ T |τ ≥ max{m ∈ S|m ≤ t}, τ <
min{m ∈ S|m > t}} and |σ(t)| denotes the cardinality of set
σ(t).

III. DECENTRALIZED DATA-DRIVEN TUNING

The algorithm developed in the following is composed
of two parts. First, a data-based system identification step
is performed, where each area estimates a model of the
remaining, non-local grid. Thereafter, the droop controller is
optimized locally given the estimated model and the local
parameters of the control area.

Data-Based System Identification: We first model the re-
maining grid as seen from local control area i as a single
transfer function Gri(s) with only local inputs and outputs.
Fig. 2 shows Gri(s) interconnected with control area i. The
input of this transfer function is the local frequency deviation
∆fi and its output ∆Ptiei is the sum of the incoming power
of all tie-lines connected to control area i.
Gri(s) is estimated using the Canonical Variate Analysis

algorithm (CVA) [9], which is within the class of subspace
methods for system identification [10]. It was verified experi-
mentally that this method provides a more accurate model of
the remaining grid compared to other subspace methods, such
as MOESP [11] and SSARX [12].

For performing the estimation, we excite the local load
∆Pdi during a time window of 100 s with two consecutive step
signals with uniformly distributed random amplitude between
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Fig. 2: Block diagram of a control area i with the remaining
of the power grid modeled as Gri(s).

[−1, 1] p.u. of power. The time window length was found
experimentally and was the smallest value in order to produce
satisfactory results for the estimation of Gri(s). During this
experiment we collect 103 samples of the input/output data
pair (∆fi,∆Ptiei) to be used in the estimation algorithm. In
our experiments, we collected the data from a simulated model
of the whole power grid. In a real-world implementation,
however, this data shall be collected from the physical power
grid by using suitable measurement equipment.

Observe that the order of the system to be estimated is a
hyperparameter of the CVA algorithm. Therefore, as the order
of the remaining grid seen by the local area is unknown,
we perform hyperparameter optimization using grid search.
The employed performance metric is an online evaluation of
the grid that consists of calculating φi over 500 s with 104

samples of the frequency deviation of the local control area.
As for the system identification, we collected the data from
a simulated model of the power grid. During the evaluation,
the loads of all control areas are excited with square signals
with independent and identically distributed (i.i.d.) random
amplitudes uniformly distributed between [−1, 1] p.u. with
period of 10 s. In our experiments, we limited the search to
order 10, both to maintain acceptable computation times as
well as to limit overfitting effects. The aforementioned online
evaluation is performed after the optimization step described
in the following.

Droop Optimization: With an estimation of Gri(s) from
the previous step, we utilize the logarithmic barrier method
(LBM) [13] with numerically computed gradients to find the
optimal droop value di of control area i given the physical
constraints stated in Section II, i.e., we perform the following
minimization

min
di

φi(di)− (1/ρ) [log(−g(di)) + log(h(di))] , (4)

with g(di) = di− 10% and h(di) = di− 1%. ρ ∈ R+ defines
the quality of the approximation of the barrier function. φi is
computed by simulating the model of the local control area
connected to the estimated remaining of the power grid as in
Fig. 2. The model is perturbed by exciting ∆Pdi for 500 s with
a square signal with random amplitude uniformly distributed
between [−1, 1] p.u. with period of 10 s.

The pseudocode for the decentralized data-driven droop
tuning is presented in Algorithm 1. d∗i represents the optimal
value of di and is initially set to the mean value of the feasible
droop set. κ is the order of the estimated system, and SYS(di)
refers to the power grid model as in Fig. 2 with droop di. eval
represents the online evaluation of the grid with the droop of
control area i set to di, which is obtained from the LBM.

Algorithm 1 Decentralized Data-Driven Droop Tuning
Input: GHTi(s), Gpi(s) . Local parameters
Output: Optimal droop value d∗i

1: procedure DATADRIVENDECDROOPTUNING
2: Initialize data array D with capacity S
3: Excite ∆Pdi with step signals for 100 s
4: Store S samples of tuple (∆fi,∆Ptiei) into D
5: d∗i ← 5.5%
6: φ∗i ←M . Where M is a large enough value
7: for κ ∈ {1, . . . , 10} do:
8: Gri ← CVA(D,κ)
9: Build system SYS(di) as in Figure 2

10: di ← LBM(SYS(di))
11: φi ← eval(di)
12: if φi < φ∗i then
13: d∗i ← di
14: φ∗i ← φi
15: end if
16: end for
17: end procedure

IV. EXPERIMENTS

We now compare our decentralized data-driven tuning al-
gorithm with a baseline that has complete knowledge of the
grid parameters and measurements, and with a heuristic that
simulates manual tuning. The algorithms are evaluated for two
scenarios in which we suddenly modify the grid topology by
connecting a new control area into the grid. Thereafter, we
describe the simulation setup and then comment on the results.

A. Algorithms’ Implementation

Decentralized Data-Driven Tuning: Provided that the algo-
rithm is implemented in all control areas of the power grid, it
is assumed that all of its instances perform the optimization
at the same time and that there are no interferences between
them during the system identification step. These assumptions
were necessary for simplification of the simulation setup. In a
real-application, however, synchronization of the algorithm’s
instances would not be required and interferences would rarely
occur and/or could be easily avoided, e.g., by applying random
delays.

Baseline: A centralized version of our algorithm is used
as a baseline. It performs the LBM again with numerically
computed gradients to optimize the set of droops d =
{d1, . . . , dN} provided the up-to-date full grid model and
the frequency deviation measurements from the N control
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Fig. 3: Structure of the examined test scenarios.

areas. The LBM optimizes for the average performance of
the interconnected control areas φ.

Manual Tuning: We simulate the manual tuning of the
control areas by applying the following heuristic that worked
well in many simulation experiments. For any grid setting,
the droop value of the control area with largest inertia is
set to 8%. For all other interconnected control areas the
droop value is set to 2%. However, supposing that manual
adaption will not happen immediately after a change in the
grid configuration, areas that are newly connected within one
simulation have their droop values set to the default value of
5.5% independently of their relative inertia.

B. Study Scenarios Definition

The designed study scenarios simulate the connection of
a new control area into the power grid. The withdrawal of a
control area from the grid is an analogous scenario and, thus is
not simulated. Within each scenario we utilize different values
for the inertia of the control areas, as we aim to cover most
of the situations that could happen in the operation of a real
power grid. Fig. 3 summarizes the study scenarios and their
sub-scenarios.

We define Scenario 1 as connecting a control area A2 into
a single-area power grid containing A1. We then divide it into
two sub-scenarios. Sub-scenario 1.1 has A1 with total inertia
H1 = 8 s and A2 with H2 = 4 s. In Sub-scenario 1.2, the
inertia values are swapped. Scenario 2 is defined as connecting
a control area A3 into a power grid with two interconnected
control areas A1 and A2 with inertias 4 s and 8 s, respectively.
It is assumed that A3 is connected at the same time to both
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Fig. 4: Performance metric φ for Scenario 1 (a) with param-
eters of Sub-scenario 1.1 and (b) with parameters of Sub-
scenario 1.2.

A1 and A2, thus forming a ring-topology. From this case, we
can define three sub-scenarios. In Sub-scenario 2.1 the inertia
constant of A3 is set to H3 = 16 s, which is much greater
than the total inertia of the power grid. In Sub-scenario 2.2,
A3 has inertia set to 2 s, much smaller than both H1 and H2.
At last, we define Sub-scenario 2.3 as A3 having intermediate
inertia, with 6 s. In the aforementioned scenarios, THTi is set
to 10% of Hi for all control areas, and all tie-line gains Lij
are set to 2π p.u. of power.

C. Evaluation Criterion

In both study scenarios, the algorithms’ performance is
evaluated by calculating the average frequency variance φ in
the power grid. To simulate disturbance in the grid, the load
of the control areas are excited by square signals with i.i.d.
random amplitudes uniformly distributed between [−1, 1] p.u.
with period of 10 s. The power grid with the configuration
previous to the connection of the new control area is then
evaluated by computing φ for a time window of 500 s using
104 frequency deviation samples. Thereafter, the algorithms
optimize the set of droops for the grid configuration with
the additional control area. The evaluation is performed for a



TABLE I: Performance metric φ for Scenario 2

DEC BASE MANUAL

{A1 +A2} {A1 +A2}+A3 {A1 +A2} {A1 +A2}+A3 {A1 +A2} {A1 +A2}+A3

Sub-scen. 2.1 1.05 3.33 1 3.11 1.09 5.83
Sub-scen. 2.2 1.05 3.45 1 3.13 1.09 3.59
Sub-scen. 2.3 1.05 5.98 1 4.66 1.09 6.03

subsequent period of 500 s using also 104 frequency deviation
samples.

Observe that this evaluation is different from the one
performed for the grid search in the system identification
step. The latter utilizes only the local frequency deviation to
determine the grid performance, as only local knowledge is
assumed, while the former applies the frequency deviation of
all control areas to determine the overall performance of the
algorithms.

D. Experimental Results

Fig. 4 shows the performance comparison for the two
sub-scenarios of Scenario 1 and Table I for the three sub-
scenarios of Scenario 2, with DEC standing for the developed
decentralized data-driven algorithm, BASE for the centralized
baseline, and MANUAL for the manual tuning approach. The
values are shown relative to the baseline performance of the
first time segment, before a new area is connected.

The developed method performed better than the manual
approach in all sub-scenarios with average improvement of
approximately 14.8%. It performed on average approximately
7.9% worse than the baseline, which was expected as the
developed algorithm uses an estimation of the whole grid,
and has therefore an additional error source compared to the
baseline.

This demonstrates that the developed algorithm can be a
good solution for tuning droop frequency controllers in a
power grid with frequent changes in its configuration. It can
outperform manual tuning and is not much worse than a
centralized tuning method. Its advantage compared to the latter
is that it does not rely on the up-to-date grid model nor on
communication with a central node, as each control area is
able to perform the droop optimization with only local data.

V. CONCLUSION

The developed algorithm for tuning the droop frequency
control enables frequency oscillation damping using a decen-
tralized approach independent of the current grid configuration
by using data-based system identification. It performs 15%
better than manual tuning and has comparable performance
with a baseline with complete knowledge of the power grid.
The usage of this algorithm helps improve the stability and
reliability of the future power grid, in which continuous recon-
figurations with new decentral generators or active prosumers
will become an inherent feature.

Future work will focus on testing additional methods for
system identification and on applying the algorithm to further

oscillation damping mechanisms and to larger grids with more
control areas.
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