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Abstract—Traditional district heating networks have been built
around few central heat production units. Now, many more
decentral heat sources based on renewable energies or waste
heat are being included to reduce carbon emissions. Given
the resulting complex flow patterns in the network reliable
and fast heat grid state estimation becomes mandatory for
efficient grid control. In this paper we first show an approach
to reduce computational efforts for various grid computations
by summarising pipe segments of the network. We then develop
a probabilistic state estimator based on the reduced model by
locally linearising the non-linear grid equations around the best
state estimate. We show that the linearisation approach with a
significantly lower computational burden achieves a prediction
quality comparable to those of a sampling-based Monte-Carlo
approach that uses the full model. This allows state estimation
to become an online routine even in complex heating networks.

Index Terms—district heating, model reduction, state estima-
tion

I. INTRODUCTION

For reducing carbon emissions in district heating the trans-
formation of traditional heating networks with few large
suppliers into 4th generation networks is required [1]. These
are characterised by decentralised suppliers as well as low
temperature levels. Therefore, traditional control strategies are
replaced by new methods based on heat grid state estimation.

Steady state heat grid models are commonly used for
analysing different aspects of district heating networks as well
as for state estimation, for example, in [2]–[6]. In contrast to
electrical power networks, however, the question of probabilis-
tic state estimation is scarcely addressed in this context. One
approach on this topic is given in [6] by locally accumulating
uncertainties in treelike networks. In this paper, we propose an
approach to probabilistic state estimation using a global lin-
earisation of the steady state equations. This approach allows
the incorporation of the correlation structure among consumer
demands. Furthermore it can be expanded for networks which
are not treelike or have multiple heat producers. A potential
downside to our approach is that the non-linear state equations
have to be solved and local derivatives have to be calculated.
This represents a significant computational effort. In order to
minimise this effort, we apply a model reduction method by
summarising similar line segments. Summarisation has been
proposed by [7], [8], [9]. However, we only merge serial
network components and therefore retain the full customer and
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supplier structure. We thus choose a middle way between full
resolution of the network topology and the merging of whole
network sections. Moreover, we simplify the computationally
expensive equations describing pressure losses in the network,
similar to [10]. All model reduction steps are carefully exam-
ined for their accuracy.

In Section II, we first introduce the steady-state model
equations for heating grids which are the basis of the state
estimation algorithm. An approach to reduce the complexity
of various grids by simplifying the network structure is shown
in Section III and the linearisation step is described in Section
IV. In Section V we provide experimental results for a slightly
modified subset of a real district heating network. We conclude
in Section VI.

II. HEAT MODEL EQUATIONS

The network state in heating grids is determined by the heat
extracted by the consumers and the set points for pressure
and temperature at the heating plants. To ensure the security
of supply these set points have to be adjusted according to
the demand. The heating network can be represented as a
graph G = (V ,E) with nodes V and edges E ⊆ V ×V .
The network state is defined by the pressures pi and the
temperatures T i at nodes i, as well as the water temperatures
at the end T end

kl and the start T start
kl of each edge (k, l) ∈ E .

The mass flow rate through edge (k, l) is denoted by ṁkl. For
each edge (k, l) ∈ E we define the nominal flow direction
from k to l such that ṁkl is positive if mass flows from node
k towards node l and negative if mass flows from node l
towards node k. Per definition it follows that ṁij = −ṁji

and T end
ij = T start

ji . We assume steady state conditions and
neglect time delays in the network. Water is assumed to be
incompressible with constant fluid properties.

Let N i := {j ∈ V | (i, j) ∈ E} be the set of all nodes
that share an edge with i. According to the mass conservation,
ingoing and outgoing flows at every node add up to zero,∑

j∈N i

ṁij = 0, ∀i ∈ V . (1)

Similarly the temperature in each node is determined by the
mixing laws of thermodynamics,

T i =

∑
j∈N i,ṁji>0

ṁji T
end
ji∑

j∈N i,ṁji>0

ṁji
, ∀i ∈ V . (2)
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The temperature at the start of an edge (i, j) ∈ E is given by
the temperature at node i if the mass flow goes from i to j,

T start
ij = T i, ∀(i, j) ∈ E with ṁij ≥ 0. (3)

We distinguish four types of edges, each characterised by
the pressure change along the edge ∆pij and the temperature
at the end of the edge T end

ij . For straight pipes (i, j) ∈ Epipe

the temperature loss depends on the ambient temperature T a,
the specific heat capacity of water cp, as well as the heat
energy loss coefficient λij and the length lij of the pipe,

T end
ij =

(
T start

ij −T a

)
exp

(
− lijλij
cpṁij

)
+ T a . (4)

The pressure loss in these pipes depends on the pipe
diameter dij , the density of water ρ and the Darcy friction
factor fD,ij ,

∆pij = fD,ij
8lij
π2ρd5

ij

ṁij |ṁij |, ∀(i, j) ∈ Epipe . (5)

The Darcy friction factor fD,ij is computed with the
Colebrook-White equation which depends on the Reynolds
number and needs to be solved numerically since it is for-
mulated implicitly, cf. [11].
Additional pressure losses appear in bended pipes. These
losses are incorporated by introducing bend edges EBend

which have no physical extension. For these edges we use

T end
ij = T start

ij , ∀(i, j) ∈ E bend, (6)

∆pij = ζij
8

π2ρd4
ij

ṁij |ṁij |, ∀(i, j) ∈ E bend . (7)

The pressure loss thus depends on a loss factor ζij which
is approximated with the experimentally defined relations pre-
sented in [12]. The equations are defined piecewise depending,
e.g., on the Reynolds number and the bending angle. For the
existing non-defined regions we interpolate linearly.

Equations (1) - (7) describe the physical behaviours of the
pipes in the network. Pressure losses due to mixing at junctions
(e.g. T-fittings) are neglected. To fully define the network state
we also need to specify the consumer and generator behaviour.

Consumer edges Edemand are modelled by a given demand
Q̇ij and a fixed return temperature T set

ij [13]

T end
ij = T set

ij , ∀(i, j) ∈ Edemand, (8)

Q̇ij = ṁijcp

(
T start

ij −T end
ij

)
, ∀(i, j) ∈ Edemand . (9)

In the experiments of this paper, we consider one heat
producer as a slack edge Eheating , providing the necessary
heating power as well as the pressure difference between
the return and supply side. This is modelled by fixing the
temperature T end

ij to a given set point T set
ij ,

T end
ij = T set

ij , ∀(i, j) ∈ Eheating . (10)

The pressure in the network is determined by the so-called
worst-point control scheme. Consumers are guaranteed a min-
imal pressure difference ∆pmin between supply and return

Fig. 1: Structure of example network. Dashed lines show the
model after reduction. The critical path from the power plant
(red circle) and worst point (blue circle) is indicated in green.
All other demands are shown as grey circles.

to ensure the flow through their heat exchanger station [13].
The worst-point is defined as the consumer (k, l) with the
smallest pressure difference, e.g. ∆pkl ≤ ∆pij ∀(i, j) ∈
Edemand. The pressure at the heating plant is actively con-
trolled such that the worst-point pressure difference exactly
matches ∆pmin, i.e., for the wort-point edege (k, l) we have

pk = pset, pl = pset −∆pmin, (11)

where pset is a reference pressure defined by the network
operator. We assume that the worst-point edge is known in
advance as is commonly the case in today’s networks. Note
that fixing the pressure at the worst-point reflects current
practice in many district heating networks. However, our
approach would work equally well if the pressure is fixed at
any other point, e.g., the heating plant, or by another logic.

The functional relations (1) - (11) form a system of non-
linear equations. To simplify our notation we summarise this
as a mapping (y ,θ,η) 7→ e(y ,θ,η) which couples the
demand θ := (Qij), ∀(i, j) ∈ Edemand with the network
state y := (pi,T i,T

end
kl ,T

start
kl , ṁkl), ∀i ∈ V , (k, l) ∈ E

and set point values η := (pset,∆pmin, T
set
ij ), ∀(i, j) ∈

Edemand ∪Eheating and postulate

e(y ,θ,η) = 0. (12)

The proof of uniqueness and existence of the solution can be
done analogous to [2].

III. MODEL REDUCTION

A first step to reduce the complexity of (12) is to summarise
pipes in a line, see Fig. 1. More specifically, we consider paths
of maximal length consisting only of pipes and bends with the
same pipe properties and no intersections, loads or generators
at internal nodes. The set of all edges lying on such a path
from i to j is denoted as Pij . The set of all such paths is P.
Every pipe and bend will be associated with exactly one path.
For the network equations (12) we then consider new edges
EP

ij for each path Pij . The edge EP
ij has the same values for

dij and λij as the pipes within Pij . The length lij results from
adding up the lengths of all pipes on their path,

lij = Σ(k,l)∈Pij
lkl. (13)



The temperature T end
ij of edge EP

ij is given by (4) with length
(13). The pressure loss ∆pij is determined by expanding
(5) with an additional constant bend friction factor fB,ij . It
approximates the influence of bends on overall pressure losses
on a path. The factor fB,ij is calculated by solving (5) and
(7) for all elements (k, l) on Pij for the nominal mass flow
rate ṁnom [14]. We then divide the accumulated total pressure
loss by the pressure loss due to pipes only. We get

∆pij = fB,ij fD,ij
8lij
π2ρd5

ij

ṁij |ṁij |, (14)

with

fB,ij =
Σ(k,l)∈Pij

∆ pkl(ṁnom)

Σ(k,l)∈Pij∩Epipe∆ pkl(ṁnom)
. (15)

We solve (12) for the reduced graph G′ = (V ′,E ′)
with E ′ = Edemand ∪Eheating ∪EP where EP is the
set of all such edges EP

ij and V ′ ⊆ V is the set of
nodes that are the start or end of any edge in E ′. Using
the simplifications described in (13) – (15) the mapping
e(y ,θ,η) is thereby reduced to the mapping ē(y ′,θ,η) with
y ′ = (pi,T i,T

end
kl ,T

start
kl , ṁkl),∀i ∈ V ′, (k, l) ∈ E ′.

Our second approach to reduce model complexity is to
simplify equation (14) that contains the Darcy friction factor
fD,ij which is complex to compute. Instead of adapting it
to the current mass flow, we fix it to its value fD,ij,nom

at the nominal mass flow ṁnom. This way, all coefficients
can be precomputed and the pressure loss includes quadratic
equations only, leading to the mapping ẽ(y ′,θ,η).

IV. STATE ESTIMATION AND LINEARISATION

Fixing the set point values η, equations e(y ,θ,η) = 0
allows to define a mapping

y = h(θ). (16)

It has the meaning of a state estimator since it outputs the
system state given demand measurements or estimates.

The estimator is now extended to yield uncertainties as well.
To this end, we assume that the demand follows a normal
distribution θ ∼ N (θ0,Σθ) with expected demands θ0 and
covariance matrix Σθ. We approximate the state estimation by
its first order Taylor series around the expected demand

y ≈ y lin = h(θ0) + Jθ0(θ−θ0), (17)

where the Jacobian matrix Jθ0
is calculated by the implicit

function theorem:

Jθ0
:=

∂ h

∂ θ

∣∣∣∣
θ=θ0

= −
[
∂e
(
y ,θ0,η

)
∂ y

]−1
∂e
(
y ,θ0,η

)
∂ θ

.

(18)

Applying (17) to normally distributed demands we obtain
estimated states that follow a multivariate normal distribution
y lin ∼N(y0,Σy ) whose parameters are given as

y0 = h(θ0), (19)

Σy = Jθ0
Σθ Jθ0

T . (20)

l_max

Fig. 2: Stretching arc with maximal pipe length lmax.

The same can be done for the simplified mappings ē and ẽ to
estimate y ′.

V. NUMERICAL EVALUATION

We evaluate the proposed approach for model reduction and
state estimation based on the network shown in Fig. 1 which
is a part of a real district heating network, modified to ensure
privacy.

A. Verification of Model reduction

To release mechanical tensions due to thermal expansion,
stretching arcs need to be installed in long, straight pipe
sections, see Fig. 2. The maximal pipe length lmax without
a stretching arc is given by the manufacturers [14]. Such a
cascade of four bends and a pipe of maximal length serves as
the test case for our investigation of the accuracy of the loss
approximation for path segments. We evaluate the accuracy of
using aggregation factor fB as well as using both fB and a
constant fD,nom. We examine this for pipes from a nominal
diameter of 20mm (DN20) to 400mm (DN400) at typical
temperatures of 65 ◦C and 110 ◦C for mass flows between 0
and the maximal recommended mass flow rate ṁmax given
by [14].

As Fig. 3a shows, the error due to the usage of fB remains
close to zero over the whole operating range. The biggest
absolute deviations in pressure loss occurs in pipes of type
DN400 for ṁ = ṁmax = 319.4 kg/s and T = 65 ◦C .
Without any simplifications the pressure loss for this case
is ∆p = 295.6mbar, the deviation due to simplifications is
0, 4mbar (0, 14 %).
Using a constant pipe friction factor fD,nom accounts for
additional deviations in pressure losses, see Fig. 3b, which
reach their peak at 4, 7mbar (1, 59 %) for ṁ = ṁmax.

We evaluate an upper barrier for the model error due to
model reduction by adding the maximal errors for all Pij
on the supply and return side lying between the feed-in and
the worst-point discussed in Section II. The mass flows ṁij

are adjusted for each Pij individually in order to yield the
maximum deviation. The summarising of edges as discussed
in section III accounts for a maximum error of 0.54mbar at an
overall diferential pressure of 934mbar which is a deviation
of 0.058 %. Usage of both a constant fB and fD,nom accounts
for a maximum error of 17.8mbar at a diferential pressure of
469mbar which corresponds to a deviation of 3.8 %.

Merging the elements on paths P leads to a significant
reduction of network elements. For our test network the
number of nodes is reduced from 267 to 48, the number of
edges from 277 to 58, cf. Fig. 1.
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(b) Straight pipe of length lmax with variable and constant fD .

Fig. 3: Pressure losses in a pipe of type DN400 with different
model reduction methods.

B. Linearised Probabilistic State Estimation

We apply the procedure laid out in Section IV on the
reduced model ē which incorporates the reduced bend rep-
resentation and a non-constant Darcy friction factor. The
parameters for the demand distribution θ ∼ N(θ0,Σθ) are
estimated based on historical demands. The consumption mean
vector θ0,i = 1

24
1
D

∑24
h=1

∑D
d=1 Q̇

d,h
i is given by averaging the

hourly mean consumption Q̇d,h
i for each consumer i at hour

h of day d.
The entries of the covariance matrix Σθ =

(
Σij
θ

)
are

gathered independently for each hour and averaged after-
wards in order to receive a reasonable correlation struc-
ture but also avoiding too large variances. This leads to
Σij
θ =

(
1
24

)3∑
h σ

h
i

∑
h σ

h
j

∑
h ρ

h
ij , with σh

i and ρhij being the
standard deviation and the normalised cross-correlation for the
historical demands of the consumer i respectively j at hour h.

Let ŷ lin ∼ N (ŷ0,Σy ) denote the state estimated by
(17) given this demand distribution. We approximate the real
network state distribution yMC by drawing N = 50000
independent sample demands out of the demand distribution
and solve (16) with the full model e for each sample using the
Newton-Raphson method. Samples for which at least one entry
in θ is negative are discarded in this process, since negative
demands are not physically feasible.

We evaluate the performance of our approach based on the

TABLE I: Deviations between the predicted distribution pa-
rameters and the sample’s mean and standard deviation.

MAE MAPE RMSE RMSPE
ṁ mean 0.017 kg/s 0.64% 0.025 kg/s 0.77%

std. 0.013 kg/s 2.10% 0.021 kg/s 2.34%
p mean 0.906mbar 0.02% 0.987mbar 0.02%

std. 0.179mbar 1.12% 0.201mbar 1.21%
T mean 0.090 ◦C 0.09% 0.176 ◦C 0.18%

std. 0.151 ◦C 17.0% 0.332 ◦C 25.5%

marginal distributions ŷlink ∼ N
(
ŷk0 , Σ̂

k,k
y

)
for each state

variable k. Since the uncertainties predicted by the linearised
model are normally distributed but approximately 2% of the
samples are discarded during the Monte Carlo Sampling, the
prediction will always deviate from the sampled state. In order
to yield a fair evaluation the results are compared against
an one dimensional normal distribution yfitk ∼ N

(
yk0 , σ

k 2
y

)
where yk0 and (σk

y )2 are the mean and the standard deviation
of the sampled results for the variable k.

Table I lists the Mean-Absolute-Error (MAE) and the
Root-Mean-Squared-Error (RMSE) as well as the Mean-
Absolute-Percentage-Error (MAPE) and the Root-Mean-
Squared-Percentage-Error (RMSPE) between the edistribu-
tion parameters estimated by the linearised model and the
parameters based on the sampled results.

Fig. 5 shows exemplary the estimated and the sampled mass
flows at the heating plant as well as the temperature at the
supply of the demand which is the furthest to the right and
therefore the furthest away from the heating plant.

We scale the state variables such that ŷlink has a unit variance
and zero mean, i.e., for each sample yik we consider the scaled
sample yik =

yi
k−ŷk,0

Σ̂k,k
y

. Fig. 4 shows the cumulated distribution
function (cdf ) for the scaled state variables.

The sampled distributions for mass flows and pressures
match well with the predicted ones, whereas the distribution
for temperatures shows significant deviations. The temperature
T end

ij is limited by the temperature at the start of the edge
T start

ij and the soil temperature T a, cf. (4). The temperature
with the highest probability is close to T start

ij . However
significantly lower temperatures can occur if ṁij is small. This
leads to a left skewed distribution over the real temperatures.

VI. CONCLUSION

In this paper we considered approaches to reduce the
computational burden for estimating the state variables of
a district heating network as well as uncertainties for these
variables. We showed that the pressure losses due to bends
and friction in the pipes can be merged into one pressure
loss equation using aggregated edges and a correction factor.
This approach reduces the number of edges in the network by
approximately 80 % and significantly decreases the computa-
tional burden. Further reduction was achieved by fixing the
Darcy friction factor onto a constant value, leading to slightly
higher calculation errors compared to the approach mentioned
beforehand. Both simplifications are considered to be valid
approaches for model reduction in district heating.
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(a) Mass flow at the heating plant.
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(b) Temperature at the supply node at the demand furthest to the
right.

Fig. 5: Comparison of the estimated marginal distribution in
red and the sampled distribution in blue. The green line shows
a normal distribution with the samples mean and variance.

We proposed a method to estimate normally distributed
uncertainties for the state variables given normal distributed
demand uncertainties, using a local linearisation of the state
equations. Compared to Monte Carlo sampling baseline the
mean deviation for the expected values of the network state
is below 1% for the predicted distribution. For pressure and
mass flow standard deviations are estimated within a single
digit percentage error margin. The prediction errors are larger
for the temperature whose real distribution is strongly left
skewed due to the way the temperature is restricted. In a
heating grid low temperatures are associated with low mass
flows and therefore low heat demand. This indicates that the

situations with high error are uncritical network states in which
the deviations seem less significant.
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Fig. 4: Marginal cumulative distribution functions of yMC (gray lines). The horizontal axis is scaled such that the predicted
distribution ŷ lin has unit variance. If yMC matches ŷ lin the blue line will result.


