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Abstract—Energy system models are widely used for opera-
tion and expansion planning, scaling from single houses up to
supranational energy grids. They can provide essential input for
decision makers. These are, however, often non-technical persons
and thus unfamiliar with mathematical modeling, which makes
them reliant on others to explain the model results to them. In
order to make energy system models more directly accessible,
we introduce a chatbot that enables also non-expert users to
interact with an energy system model through natural language.
Built with state-of-the-art natural language processing tools, it
allows to manipulate the model inputs and can interactively
answer questions about the results, both in free-form text and via
structured plots. We present example interactions for a model of
the German energy transition.

Index Terms—energy models, natural language processing,
machine learning, accessibility, chatbot

I. INTRODUCTION

Energy system models are applied from intra-day action
planning for single power units, e.g. home photovoltaic sys-
tems with storage, up to long-term development planning
for international energy clusters. Various model frameworks
are available, for instance, TIMES [1] or OSeMOSYS [2].
Besides the technical results like operational schedules or
quantitative expansion plans, these models can also answer
questions of public interest, such as ”What is the cost of energy
transition?” or ”What is the ecological and economical benefit
of a wind turbine?”.

In technical terms, many energy system models are large
linear programs that take a host of technical data as inputs and
return their optimal decisions in the form of large data tables.
Depending on the model’s scope, the number of variables of
an energy system model can be in the millions. This makes
extracting the information of interest or identifying the right
parameter to change for a sensitivity analysis a challenging
task. For non-experts such a task might even be impossible.

However, those non-experts are often the ones that are in
the end responsible and accountable for the decisions that
are taken based on the model outcomes. Such a decision
could be whether or not to build a certain power plant, or
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Fig. 1. Possible conversation paths of the proposed energy system chatbot. A
user’s input can lead to 1) immediate response, 2) interaction with the energy
system model is needed and the answer is dependent on the model output,
or 3) the chatbot responds with a request for clarification, in case the user’s
input is not distinct enough.

whether or not to push for a regulation that allows wind
turbines in the close vicinity of settlements. Model end-users
may thus be politicians, company managers, or even regular
citizens. Without explanations from third party professionals,
such decision makers could neglect or misinterpret the model
results and in turn take bad decisions.

In this work, we try to make energy system models more
accessible to non-experts, in line with [3]. We describe a
chatbot interface enabling the users to directly interact with
the energy system model via natural language. Without having
to know the technical details of modelling, non-expert users
as well as domain experts can quickly access information
of a model’s output or change model settings and initiate
new model evaluations. The model can interactively request
additional information from the user, and it presents model
results in the form of numerical answers or structured plots.
Moreover, the chatbot can answer many general questions
about the involved energy entities.

Previous work [4] has shown that a chatbot interface to a
smart home can help save up to 10 % of energy consumption
by proposing suitable actions. However, no chatbot interacting
with energy system models has been described so far.

The remainder of this paper is structured as follows: Section
II briefly reviews the employed energy system model. The
framework and data behind the chatbot interface is explained978-1-6654-4875-8/21/$31.00 ©IEEE
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Fig. 2. Schematic overview of the employed energy system model of Ger-
many. Different energy forms are displayed as ellipses, conversion processes
as rectangles. In- and output arrows of a conversion process show which
energy forms are transformed into the other. Conversion processes without
input or output represent fixed energy demands or energy import into the
model domain.

in section III, its integration into a complete application in
section IV. A video with example interactions is linked in
section V followed by a conclusion in section VI.

II. EMPLOYED ENERGY SYSTEM MODEL

The employed model allows exploring transformation paths
for the German multi-modal energy system in the time range
from 2020 to 2050.

Mathematically, it is a linear program as described in
[5], [6]. Each technology is represented as a conversion
process, converting different energy forms into each other.
For each conversion process, a variety of parameters like
costs, capacities, specific emissions or time-related restrictions
can be defined. The model minimises the total cost of the
energy system by choosing both the cost-optimal operation
and expansion plan. Additionally, a CO2 emission limit can
be defined. The model is solved with a 5-year resolution,
where each year is represented by four weeks from all seasons
in three-hourly timesteps. This sparse simulation was chosen
to have a short solving time, enabling the chatbot to give
interactive responses. The simulation settings can be changed
in the conversation if a more detailed simulation is desired.

Figure 2 shows an overview of the model entities. A total
of 6 energy forms and 12 conversion processes are part of
the model, plus additional 8 conversion processes for resource
import and demand.

III. CHATBOT METHODOLOGY

For the development of chatbots, multiple machine learning
frameworks exist. Example frameworks are LUIS, Watson,
Dialogflow, wit.ai – to only name a few [7]. For this chatbot,
we have adapted an instance of the RASA framework [8], an
open-source and state of the art framework with respect to
intent and entity recognition [9]. An intent is a classification
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Fig. 3. The RASA DIET classifier for the instruction ”show total cost”.
Each word is represented as a one-hot vector and the sentence as the sum
of those in the CLS vector. All input vectors are processed by a neural
network and two transformer layers. In the conditional random field (CRF),
each processed word vector is assigned to an entity. The CLS vector is further
processed by an additional embedding layer and compared to an embedding
of all possible intents.

category for the user input that describes the type of reply the
chatbot will give. An entity exists within an intent and can
further specify the input’s meaning. For example, if the user
asks to see a plot of the total cost, show plot is the general
intent and ”total cost” is the entity – see Section III-B.

In Figure 1, the basic structure of the user interactions with
the chatbot are displayed. Some intent classifications by RASA
do not require interaction with the energy system model, e.g.
small talk or questions that are not directly related to the
model. For these inputs, the chatbot can give an immediate
response. If the user input is classified to require model
interaction, the connected energy system model is used. The
chatbot is also capable of sending follow-up questions or
remarks, e.g. if the user’s text input is faulty, or a clarification
of certain specifics about the input is required.

A. Training data and different question types

For RASA’s intent classification mechanic, we specified
training data to be able to engage the user in multi-turn
conversations. At maximum three past messages are needed for
the longest multi-turn conversation that our chatbot can handle.
However, five past messages are selected in order to have
some leeway in case non-related user inputs occur during a
conversation. If the limits are too large, the chatbot could take
reference to an input that the user has not in mind anymore.
Moreover, it is important that not too many messages are taken
into account so that the real-time calculations are not delayed
significantly and a better user experience is guaranteed. The
policy that incorporates these past messages is called TED
Policy in RASA [10].

To enable the chatbot to answer different types of questions
(e.g. FAQ, small talk or model questions) RASA offers a
technique called retrieval action. Classifiers using this tech-
nique are able to detect – besides their regular set of classes
– an input belonging to a special type of category, which is
then processed further with a different classifier. The main
DIET classifier detects the intents requiring energy system
model interactions. Additionally, it can detect small talk and
the implemented FAQs. Inputs classified to be within those



## intent:show plot
- show me the [total costs]
{”entity”: ”Plot”, ”role”:
”totalCosts”}.

training sentence for the
intent show plot with the
entity ”total costs” specifying
the plot type

##
∗ show plot

- action show plot

path chatbot takes if intent
show plot gets detected, the
entity role determines the plot type

(a) Single training sentence for a model request. The prefix action in the
reply of the chatbot jumps to a custom implemented function, which in
this case, shows a plot of the current models total cost.

## intent:faq/faq Fossilfuel 0
- When was the first use of the

term ”fossil fuel”?

training sentence for the retrieval
intent faq and its question
faq Fossilfuel 0

##
∗ faq/faq Fossilfuel 0

- 1759.

path of chatbot if separate
classifier detects faq Fossilfuel 0

(b) Single training sentence for the FAQ with retrieval actions. The DIET
classifier categorises the data into the general intent category faq and then with
another dedicated classifier the data gets classified into the specific question
faq Fossilfuel 0.

Fig. 4. Example training data for a request about the model in Figure 4(a) and data for a FAQ pair in Figure 4(b).

two categories will be forwarded to seconds-stage classifiers to
determine the correct answers. For each of the resulting three
classifiers, multiple training examples and the corresponding
responses had to be defined. The used training data sets are:

• For the small talk capability, a dataset by Microsoft was
integrated. This dataset is called Personality Chat and
includes 90 different intents for training [11].

• The FAQ training data was created by data scraping from
Wikipedia and extracting question and answer pairs. The
extraction was done with the tool Question Generation
[12]. The articles about fossil fuels and about renewable
energy in Germany were used for question generation. 87
question-answer pairs were created this way.

• The training data for the model questions was specified
manually, because it is specific to the functionalities of
the underlying energy system model. As these types of
questions take direct reference to the energy model, the
answers are dynamic and dependent on the current energy
model. Here, 28 different intents were created.

Figure 4 shows the format of the data for a model question
and a FAQ pair. Additionally to the training data, a reply of
the chatbot has to be defined. Notably, the prefix action in
Figure 4(a) lets RASA jump to custom implemented code and
not a static answer, which results in inputs about the model
being answered dynamically.

Additionally, we modified the FAQ training data to get
more training examples. The modifications were done by
randomly removing characters or words in the questions. This
can prevent the overfitting of a neuronal classifier for the FAQ.

B. Intent & Entity Classification Methodology

The main classifier used is RASA’s Dual Intent and Entity
Transformer (DIET) architecture [13]. Schematically this ar-
chitecture is shown in Figure 3. The example input in Figure
3 is ”show total cost”. This phrase needs to be classified to
its intent show plot. Additional to this intent classification, an
intent can have entities included. The entity in this example is
what type of plot should be displayed. In this case, the entity
that gets classified is ”total” and ”cost”.

In the following, the processing steps that the DIET classi-
fier traverses are shortly described. Each part of the user input,

which is separated by a whitespace, counts as a token and
goes through two steps of preprocessing. First, each token is
transformed into a one-hot encoded vector with the dimension
of all unique words in the training data. The encoding for
the complete input text is done by summing up all the one-
hot encoded vectors – this path is marked with CLS in
Figure 3. Second, all encoded vectors are fed step-by-step
through a single-layer neural network, bringing the one-hot
encoded token vectors to a fixed dimension of 256. Neural
networks are used here to compress encoded vectors to latent
representations with smaller dimensions.

The preprocessed vectors then go through two transformer
layers, which assign more semantic meaning between the
words of the input, whereby patterns and word relations to
each other can be learned [14]. The vectors, which were single
word tokens initially, are further used for entity recognition.
The vector for the whole sentence is used for intent classi-
fication. For the intent classification, all defined intent labels
also get one-hot encoded. In order to calculate a similarity,
the transformer output for CLS and the encoded intent
labels are embedded into a single semantic vector space with
a dimension of 20. The similarity is subsequently calculated
with a loss function giving the resulting intent loss [13]. A
loss function is used, which maximises the similarity Lintent

of the output vectors of the embedding layers in Figure 3.
With the outputs of the embedding layers being defined as
hCLS and hintent for all specified intents, a similarity S is
maximised by choosing the best fitting intent. The matched
intent is defined as S+ = hT

CLSh
+
intent and unmatched intents

as S− = hT
CLSh

−
intent. The intent loss function is given by

Lintent = −〈S+ − log(eS
+

+
∑
Ω−

eS
−

)〉, (1)

with Ω− being the set of the negative sample and 〈.〉 the
average over all examples for the current intent during training
[13]. Entity classification works similarly. If a token got
assigned to an entity in the training data, the entity label for
the token gets one-hot encoded and a loss is calculated in the
conditional random field (CRF) block with the token outputs
from the transformer layers. This entity classification in the



Fig. 5. Further model parameters can be changed with a keyword matching
algorithm. It works by comparing each word of the user input to words in a
displayed list and an additional synonym dictionary in the background. As a
similarity metric the Jaro-Winkler distance is used [16]. The categories with
the highest probability are presented to the user and they then can be selected
for editing. Even spelling mistakes lead to a correct recognition.

CRF block respects surrounding entity labels of a token, which
RASA uses to further capture the relations of neighbouring
words [13], [15]. The entity loss from the CRF block is
then added to the intent loss and the classifier optimises
this summed up loss. In the practical prediction case, DIET
chooses the labels that produce the smallest loss, as shown for
the example in Figure 3. Out-Of-Vocabulary words are handled
by ignoring them. DIET is trained by minimising the sum of
the entity and intent losses.

In the case that an input is a FAQ or small talk, the
DIET classifier only detects whether the input belongs to
either of those categories. The text is then processed further
in two respective classifiers, which are quite similar to the
intent classification part of the DIET architecture, except no
transformers are used. Instead of being compared to intent
labels, inputs are compared to all question-answer pairs within
their training data category.

IV. APPLICATION INTEGRATION

The complete application integrates the raw natural lan-
guage processing (NLP) interface, see Figure 6, with a second
way of specifying scenarios and simulation parameters via a
structured interface, see Figure 5. The idea is that a non-expert
user will start with the NLP interface only and can, once he
has become familiar with the terms, get more control via the
structured interface. This helps to give more control over the
models.

The structured interface based on partial word matching,
not RASA, is described in Section IV-A. The additional
environment for comparing several different simulation runs
is described in section IV-B, security feature in section IV-C.

A. Request and change model parameters

Requesting and changing parameters of the energy system
model is possible in two different ways. The first way is to
do it during a conversation with the chatbot. An example
input by the user to request a model parameter could be
”How much CO2 does the system emit?”. An example input
to change a model parameter would be ”Change the CO2

Fig. 6. Bar plot of the primary consumed energies in two different energy
system models for the simulated year 2050. The model from the right bar can
produce up to four times more energy through photovoltaic power (PV) and
two times more through wind power, compared to the base model on the left.
In addition, the costs for storing energy were lowered and the costs to import
coal and gas were increased. This plot was invoked by the user input ”Show
me the bar plot of the primary consumed energies”. The matching of input
and reply is done by RASA here.

prices of the model.”. This would lead to a follow-up question
by the chatbot for clarification, asking for which year of the
simulation which price should be set.

The second way to change parameters in a more in-depth
manner is by using a keyword matching algorithm in a separate
model editing mode of the chatbot. This algorithm works by
using categorical options for the type of parameters the user
wants to change, e.g.: CO2 values, costs, energy outputs.
The user has the option to select a category by typing in a
sentence. This input is compared to each of the categories.
The comparison furthermore takes a synonym dictionary into
account, so that the word CO2 would also match with e.g.
carbon-dioxide. After the categorical selection, the desired
parameter to change is determined in the same manner. The
similarity is computed by the Jaro-Winkler distance, which is
a string metric and gives back a similarity score between 0 and
1, where 1 means that two compared words are identical [16].
For two words in the keyword matching algorithm to count
as matching, the Jaro-Winkler distance has to be larger than a
threshold, 0.8 worked well in our tests.

The chatbot is able to answer more complex inputs that
require multiple interactions with the model. Consider the in-
put ”What would change if the [conversion process] produces
[number] times more energy per year?” The ”[conversion
process]” specifies a template for a trained entity inside the
energy model, e.g. a wind power plant, and ”[number]”
specifies a positive rational number that acts as a factor for the
current energy output per year. To answer this question, the
energy system model result has to be read for the respective
value. A potential request for clarification might follow up
if the user input was not specific enough. If all required
information is clear, the new value can be set. A request
follows if the chatbot should rerun the simulation or wait for
further changes.



B. Comparison of modified models

To make the impact of model changes more accessible
to users, a visual comparison of results from altered model
versions is implemented. The comparison can be done for
17 different plots, including plots for energy production,
technology costs or CO2 emissions. Two different models can
be altered using the chatbot, while the base model remains
untouched for comparison. In Figure 6 three speech bubbles
with a model comparison during a conversation with the
chatbot are displayed. They were invoked by the user’s input
”Show me the bar plot of the primary consumed energies.” –
the plot shows the baseline on the left and an altered model on
the right. The model can produce up to four times more energy
through photovoltaic power and two times more through wind
power. Furthermore, the costs for storing energy were lowered
and the costs to import coal as well as gas were increased.
Menu buttons above the bar plot inside the chat bubble allow
to toggle individual models on and off and allow for further
plot interactions like zooming or exporting.

C. Safety layers

All inputs that are not classified as FAQ or small talk are
encapsulated in multiple conditional blocks. With these con-
ditional statements, custom errors are caught, and a message
gets displayed explaining why the error occurred. An error
could be e.g. that a negative energy output was specified, an
entity was not correctly recognised, or that a simulation was
infeasible. These extra levels of error catching are essential,
because the classifiers do not take every boundary condition
into account.

V. EXPERIMENTS

The complete application and exemplary interactions are
demonstrated in the video at https://youtu.be/wK38TDXymF8.
Exemplary screenshots are given in Figure 5 and Figure 6.

VI. CONCLUSION AND OUTLOOK

With this chatbot, an accessible natural language interface
was created, which brings a complex engineering tool to
the hands of non-experts, enhancing their decision-making
process. The user can easily change model parameters, request
results, compare different versions of a model visually, and
has an additional layer of safety for incorrect inputs. For user
guidance, a catalogue was composed that provides exemplary
user inputs to obtain a certain chatbot reply. The chatbot was
optimized with regard to the inputs in this catalogue.

The main hyperparameters that were optimised are the
output dimensions of the embedding layers for the intent
classifications plus response selections and the trained epochs.
RASA’s optimisation tool nlu-hyperopt was utilised for this
task [17]. Due to the lack of aggregated user data at this point
in time, the data is relatively scarce, so the chatbot does not
perform well if the input is very different from the catalogue.
Furthermore, the chatbot’s interactions with the energy system
model are not model agnostic, thus a different energy system

model would require the interactions to be reprogrammed
within the chatbot.

Further work to improve the chatbot could include:
• Expanding the training data set for the FAQ collection

and improving it to enable bidirectional questions.
• Collecting additional data for the energy system model

interactions through user testing. This could potentially
be done trough an online version of the chatbot to reach
a bigger audience.
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[3] J. Hüelsmann and F. Steinke, “Explaining Complex Energy Systems:
A Challenge.” Poster presented at: ”Tackling Climate Change with
Machine Learning” NeurIPS, December 11, 2020.

[4] U. Gnewuch, S. Morana, C. Heckmann, and A. Maedche, “Designing
conversational agents for energy feedback,” in International Conference
on Design Science Research in Information Systems and Technology,
pp. 18–33, Springer, 2018.

[5] K. Schaber, F. Steinke, and T. Hamacher, “Transmission grid extensions
for the integration of variable renewable energies in europe: Who
benefits where?,” Energy Policy, vol. 43, pp. 123–135, 2012.

[6] K. Schaber, F. Steinke, and T. Hamacher, “Managing temporary oversup-
ply from renewables efficiently: Electricity storage versus energy sector
coupling in germany,” in International Energy Workshop, Paris, 2013.

[7] M. Canonico and L. De Russis, “A comparison and critique of natural
language understanding tools,” Cloud Computing, vol. 2018, p. 120,
2018.

[8] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa:
Open source language understanding and dialogue management,” arXiv:
1712.05181, 2017.

[9] X. Liu, A. Eshghi, P. Swietojanski, and V. Rieser, “Benchmarking natural
language understanding services for building conversational agents,”
arXiv: 1903.05566, 2019.

[10] V. Vlasov, J. E. M. Mosig, and A. Nichol, “Dialogue transformers,”
arXiv: 1910.00486, 2019.

[11] V. S. Kannan, “Personality chat.” https://github.com/microsoft/
BotBuilder-PersonalityChat, 2018. [Online; accessed 25-March-2020].

[12] S. Patil, “Question generation using hugging face transformers.”
https://github.com/ patil-suraj/question generation, 2020. [Online; ac-
cessed 25-March-2020].

[13] T. Bunk, D. Varshneya, V. Vlasov, and A. Nichol, “Diet: Lightweight
language understanding for dialogue systems,” arXiv: 2004.09936, 2020.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, p. 5998–6008, 2017.

[15] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data,”
in Proceedings of the Eighteenth International Conference on Machine
Learning, ICML ’01, (San Francisco, CA, USA), p. 282–289, Morgan
Kaufmann Publishers Inc., 2001.

[16] J. M. Keil, “Efficient bounded jaro-winkler similarity based search,” in
BTW 2019, pp. 205–214, Gesellschaft für Informatik, Bonn, 2019.

[17] T. Wochinger, A. Nichol, and M. Loubser, “Hyperparameter search for
rasa nlu.” https://github.com/RasaHQ/nlu-hyperopt, 2020.

https://youtu.be/wK38TDXymF8

	Introduction
	Employed Energy System Model
	Chatbot Methodology
	Training data and different question types
	Intent & Entity Classification Methodology

	Application Integration
	Request and change model parameters
	Comparison of modified models
	Safety layers

	Experiments
	Conclusion and Outlook
	References

