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Abstract—For risk assessment purposes, we study how eco-
nomic dispatch decisions vary with the uncertain input factors
that may arise, e.g., from the use of variable renewable energies.
Given a known random input distribution and linear program-
ming (LP)-based dispatch, we aim to describe the distribution of
the resulting variables and objective values. Relying on Monte
Carlo simulation (MCS) is computationally expensive, especially
if the uncertain factors are high dimensional. In this paper we
evaluate an algorithm using multiparametric linear programming
(MPLP) for this purpose. It avoids solving an LP for every
sample of the random vector by characterizing the parametric
LP solution as a piece-wise linear function whose pieces can be
stored for repeated use. We compare the algorithm with MCS and
other quasi-Monte Carlo sampling approaches for three economic
dispatch use cases with varying complexity. The MPLP approach
is as accurate as MCS, but up to 300 times faster for the merit
order use case.

Index Terms—Linear programming, Uncertain systems, Sam-
pling methods, Power system simulation.

I. INTRODUCTION

An increase in renewable energy generation has been ob-
served in the last years, providing cleaner and sometimes
even cheaper energy to consumers [1]. A serious drawback of
systems with a large share of wind and solar energy is that their
power output is highly variable and not fully predictable due to
ever-changing weather conditions. The outcomes of dispatch
routines depending on these conditions are then also uncertain.
This presents a challenge to system operators who require at
least a description of the probabilities of potential variations
to ensure safe system operation.

Linear programming (LP) is a common tool for solving
economic dispatch in energy systems [2], [3]. Monte Carlo
Simulation (MCS) can be used to determine the distribution
of the dispatch outcomes given a known distribution of the
input parameters. With a large amount of samples, it is known
to produce accurate results. Still, this brute-force approach
requires many computational resources to solve medium and
large problems [4].

In this work, we evaluate a multiparametric linear pro-
gramming (MPLP) approach to solve LPs under uncertainty
orders of magnitude faster than MCS. It can solve problems
with uncertainty in the right-hand side of the constraints and
in the objective function. We use three economic dispatch
use cases with varying complexity to validate the algorithm
and to compare it with three sampling-based methods: MCS,

Latin Hypercube sampling (LHS) [5], and Halton Sequence
sampling (HSS) [6].

The remainder of the paper is structured as follows: in
Section II we describe the problem statement. We present the
MPLP approach to solve LPs under uncertainty in Section III.
In Section IV we define the three economic dispatch use cases
with which we evaluate the algorithm. Section V presents the
results of our evaluation, and in Section VI we provide an
outlook and discussion on future research.

A. Related Work

Uncertainty in LPs has long been investigated in diverse
fields of study. For a broader literature review on the topic,
refer, e.g., to [7]. In [8], a fast method to solve LPs un-
der uncertainties is proposed. The randomness is assumed
Gaussian distributed with low variance, such that the optimal
basis of the problem remains unchanged. Pure MCS is used
in [9], [10] to solve LPs under uncertainty. In [9], MCS
is used to model the uncertainties related to the stochastic
variations of wind power generation and load demand. Other
works propose the combination of different techniques to
improve the speed of MCS. In [11], a new probabilistic
method involving transient stability and voltage stability for
power system security assessment is presented by combining
MCS and a neural network. The work in [12] offers potential
improvement by using quasi-Monte Carlo (QMC) techniques,
enabling faster convergence of the simulation.

One can achieve considerable speed improvements com-
pared to the above described sampling-based approaches by
leveraging MPLP. A forecasting technique of real-time loca-
tional marginal cost using MPLP was developed in [13]. In
[14], a fast reliability evaluation of power systems is proposed,
where the generation status and the sampled load are the
MPLP parameters of the model. The algorithm evaluated in
our work is analogous to the one proposed in [14], with an
extension for LPs with uncertainties in the objective function.

II. PROBLEM STATEMENT

A parametric LP with variable right-hand side (RHS) of the
equality constraints is given as

x∗(θ) ∈ argmin
x

cTx

s.t. Ax = b+Bθθ,

x ≥ 0,

(1)



Algorithm 1 MPLP-based Algorithm
Input: Number of samples N
Output: Optimal solutions x̃,Optimal costs z̃

1: x̃, z̃ := Ø
2: Draw N samples of θ and store them in θ̃.
3: while θ̃ ̸= Ø do
4: Solve LP with first element of θ̃ and calculate CR Θ

with (3) or (5).
5: With the samples of θ̃ that belong to Θ, calculate x∗

and z∗ and append them to x̃, z̃.
6: Remove utilized samples from θ̃.
7: end while

where A ∈ Rm×n, b ∈ Rm, Bθ ∈ Rm×p, and c ∈ Rn are
parameters of the model and θ ∈ Rp is a random parameter.
In case the variability is in the objective function (OFC), the
parametric linear program is given as

x∗(θ) ∈ argmin
x

(c+Cθθ)
Tx

s.t. Ax = b,

x ≥ 0,

(2)

with Cθ ∈ Rn×p being another parameter of the model.
Assuming that θ is a random vector drawn from a dis-

tribution with probability density function (PDF) pΘ(θ), the
solution x∗(θ) of (1) or (2) is also a random vector and we
denote its PDF by pX∗|Θ(x

∗|θ).
In many risk assessment problems, pΘ(θ) is known. The

PDF of the solution pX∗|Θ(x
∗|θ) can, however, not be derived

from it in closed form, at least not for general LPs. This holds
even if the input distribution is the standard multivariate Gaus-
sian distribution N (µ,Σ), which we will assume throughout
this paper.

One way to solve this task is to obtain a discrete approxima-
tion of pX∗|Θ(x

∗|θ) using samples of θ ∼ pΘ(θ). These can
be drawn with low computational effort [15], but the method
requires the solving of the LP for each sample point, making
this approach computational intensive.

In this paper, we evaluate an algorithm that proposes a
more efficient way of obtaining a discrete approximation of
pX∗|Θ(x

∗|θ) by leveraging MPLP to eliminate unnecessary
calls of the LP optimization algorithm.

III. MULTIPARAMETRIC LINEAR PROGRAMMING
ALGORITHM

A. Multiparametric Linear Programming

Following [16] every solution (if existent) of LP (1) or (2)
defines an optimal basis. For a subset of m basic variables
with indices IB , matrix B ∈ Rm×m consisting of m columns
of A indexed by IB is called a basis, and D ∈ Rm×(n−m)

denotes the matrix with the remaining columns of A. In the
case θ = 0, if B is non-singular, we can define the relative cost
vector for the non-basic variables as rTD = cTD − cTBB

−1D.
Here, cB is a vector with m components of c indexed by
IB , and cD contains the remaining components of c. Vector

x = (xB , 0), with xB = B−1b, is an optimal solution of (1)
or (2) iff rD and xB are both non-negative.

While primal feasibility in (1) depends on the random vector
θ, rD does not change with θ. Thus, basis B remains optimal
as long as

−B−1Bθθ ≤ B−1b. (3)

The polyhedron ΘRHS(B) = {θ| (3)} is called the critical
region (CR) where B is an optimal basis, and, for any θ ∈
ΘRHS(B), an optimal solution of (1) is given by:

x∗ = B−1b−B−1Bθθ. (4)

In the OFC problem of (2), only rD depends on θ. Thus,
basis B remains optimal if

θT
(
−CT

θ,D +CT
θ,BB

−1D
)
≤ cTD − cTBB

−1D, (5)

with Cθ,B being a matrix with m rows of Cθ indexed by
IB , and Cθ,D being the matrix with the remaining rows. The
critical regions are given by ΘOFC(B) = {θ| (5)}, and the
value of the objective function for θ ∈ ΘOFC(B) is given by:

z∗ = (cB +Cθ,Bθ)
T
xB . (6)

B. MPLP-based Algorithm to solve LP under Uncertainty

Here, we present an MPLP-based algorithm to efficiently
solve LPs with either RHS or OFC uncertainties. As mentioned
earlier, the algorithm is reminiscent of [14]. The key idea of it
is to use already calculated CRs to quickly evaluate the optimal
value of the decision variable x and of the total cost (objective
function) z. The algorithm is formulated in Algorithm 1 and
is summarized in the following.

An amount of N samples of the random vector θ are drawn
and stored in an array. Sampling can be performed using any
method, e.g. MCS or LHS. The first sample is used to solve the
LP and, given the resulting optimal basis, the CR is calculated
using (3) in case of an RHS problem, or (5) if it is an OFC
problem. Then, the algorithm calculates and stores an optimal
value of the decision variables and of the total cost for all
samples within this CR. Samples within the CR are removed
from the samples array, and the process is repeated until the
array is empty.

As observed in Section V, this algorithm is particularly
efficient when the LP’s solution has a small amount of
large CRs. However, when the solution has many small CRs,
the algorithm performs no better (or even worse) than pure
sampling methods like MCS. These points are discussed in
Section V.

IV. EVALUATED USE CASES

We examine three use cases for the economic dispatch to
evaluate the performance of the MPLP-based algorithm. Sam-
ples of random vector θ are supposed to follow a multivariate
Gaussian distribution. The values of the problems’ parameters
can be found in the Appendix.



A. Merit Order with Uncertain Demand (MO)

Ten power plants have to supply energy to an uncertain load
with mean d. Transmission losses are neglected. The power
plants have different marginal costs c and generation upper
limits x̄. The LP of the use case is the following:

min
x

cTx

s.t. 1Tx = d+ θ,

0 ≤ x ≤ x̄,

(7)

where 1 is a vector of ones with appropriate dimension. The
solution of this problem (calculated using MCS with a large
amount of samples) has ten CRs, each one corresponding to
a generation upper limit.

B. Bidding Strategy for Thermal Power Plant with Ramping
Constraints (BS)

In the day-ahead planning of a thermal power plant, the
goal is to maximize the profit by selling the production to
the energy market. We consider a combined cycle gas power
plant that has a ramping constraint δ and a maximal generation
capacity x̄. Profit is given by the random energy price pe + θ
that varies throughout the planning horizon minus the plant’s
fixed marginal cost cm. Fig. 1 shows the price curve that
was utilized in this use case. The mean prices are taken
from the Entso-E transparency site [17] for the days 21–
22 of October in the German-Luxemburg market zone. The
NetConnect gas price for October 21 was near 15C/MWh
[18], and the emission allowances was 24C/tCO2 [19]. The
specific carbon dioxide emissions for natural gas is assumed
to be 0.2 tCO2/MWh [20]. The marginal cost cm is calculated
assuming a total power plant efficiency of 0.56.
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Fig. 1. Market price and marginal cost of the thermal power plant for the
BS use case. The green line represents the mean market price and the shaded
area plus minus one standard deviation.

Considering a period of 48 hours, the LP for the use case
is:

min
x

(cm1− pe − θ)Tx

s.t. |xt − xt−1| ≤ δ, ∀t ∈ [2, 48],

0 ≤ x ≤ x̄.

(8)

This problem is much harder to solve than the MO’s one, with
its solution having more than 8000 CRs.

C. Battery Management for Solar-powered Microgrids (SM)

The last use case is a microgrid management problem for
renewable islands where we aim at minimizing the production
cost given uncertainty in the renewable generation. The micro-
grid has three components: a diesel generator with maximal
power output x̄D, a photovoltaic plant with uncertain, time-
dependent maximal output x̄P,t+θt, shown in Fig. 2, a battery
(capacity x̄e

β , maximal power output x̄p
β , self-discharge rate

λ, efficiency η), and a constant load d. The only generation
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Fig. 2. Time-dependent maximum power output of photovoltaic plant for the
SM use case. The yellow line represents the mean maximum power output
and the shaded area plus minus one standard deviation.

cost in the system is the diesel fuel needed to run the diesel
generator with specific cost c. The LP of the use case is as
follows:

min
x

c1TxD

s.t. xD + xP + x+
β − x−

β = d1,

0 ≤ xD ⩽ x̄D1,

0 ≤ xP ⩽ x̄P + θ,

0 ≤ xe
β ⩽ x̄e

β1,

0 ≤ x+
β ,x

−
β

|x+
β,t − x−

β,t| ⩽ x̄p
β , ∀t ∈ [2, 24]

xe
β,t − λxe

β,t−1 = −1

η
x+
β,t + ηx−

β,t, ∀t ∈ [2, 24]

(9)

where x = (xD,xP ,x
+
β ,x

−
β ,x

e
β) are the power production of

the diesel generator, the power production of the photovoltaic
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Fig. 3. Critical regions of SM use case’s solution as function of the first two
principal components of θ.

plant, the output/input power provided/consumed by the bat-
tery, and the battery’s energy level for each of the 24 hours of
the day. The solution of this problem has approximately 800
CRs. In Fig. 3 we show how the CRs are distributed in the
R2 plane spanned by the first two eigenvectors of a Principal
Component Analysis [21] of θ.

V. RESULTS

A. Evaluation Criterion

The accuracy of the MPLP-based algorithm is evaluated
with a metric analogous to the Cramér-von Mises criterion
[22], [23], where the reference distribution is the solution
obtained with MCS using a large set of samples, referred to
as benchmark. In our use cases, it was verified experimentally
that the benchmark’s distribution was stable w.r.t. sampling
variations given 104 samples. For each method K, which can
be either the MPLP-based algorithm or a sampling approach,
the accuracy metric is defined by the root-mean-square error
(RMSE) over 99 evenly-distributed quantiles of the inverse
cumulative distribution function of the optimal cost obtained
by method K, i.e.,

AccK =

√∑99
i=1

[
F−1

K (i/100)− F−1
Bench(i/100)

]2
99

, (10)

where F−1
K and F−1

Bench are the inverse cumulative distribution
functions of the optimal cost obtained by method K and by
the benchmark, respectively.

B. Methods Comparison

Five different methods to solve LPs under uncertainty
are compared regarding accuracy and solving speed: three
sampling methods, MCS, LHS and HSS, and two variations of
the MPLP-based algorithm, one using MCS and another using
LHS to sample from the random vector θ. The results can be
seen in Fig. 4. They were obtained on an Intel Core i5-3210M
@ 2.50GHz CPU laptop with 16GB using Gurobi [24] as
the LP solver and with Python as the modeling programming
language.
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Fig. 4. Accuracy (10) of the optimal cost distribution as a function of
computation time. Values from both dimensions were scaled with min-max
normalization (using the average values over all runs). As above, the line
represents mean values and the shaded areas plus minus one standard deviation
over 50 different sample sets.

For the cases with a smaller number of CRs, a clear
advantage with the MPLP-based method is observed. For
instance, the MPLP-based algorithm solves the MO problem
two orders of magnitude faster than the sampling methods,
with the variant using LHS having a 291-fold speedup. In the
SM use case, the difference in solving speeds is around 3.2
times between the MPLP-based algorithm and the sampling
approaches. The MPLP-based algorithm performs worse than
the sampling methods in the BS use case because when the
solution has a large amount of CRs calculating the CRs and
verifying which samples are within the CRs is more time
consuming than just solving the individual LPs. Regarding the
sampling methods, LHS is faster than MCS and HSS in all
three use cases.

VI. CONCLUSION AND FUTURE WORK

This paper presents an evaluation of an MPLP-based al-
gorithm to solve economic dispatch LPs under uncertainty.



Different methods for sampling distributions are compared
regarding accuracy and computation time. It was verified
experimentally that the performance of the MPLP-based al-
gorithm depends on the structure of the LP. If the solution
has only a few CRs, and, thus, a high number of samples per
base, the MPLP-based algorithm is up to 291 times faster than
MCS with the same accuracy. Conversely, if the solution has
a large amount of CRs (for instance, in the bidding strategy
use case), sampling methods are faster, with LHS being the
best overall variant.

Taking into account this work’s results, future research can
be done in exploring common patterns of economic dispatch
LPs, so that it is possible to choose for each problem the
method with the best tradeoff between computation time and
accuracy. Furthermore, it would be interesting to investigate
the possibility of a generalized LP relaxation framework, with
which the number of CRs in the solution is reduced, giving a
computational advantage to the MPLP-based algorithm.

ACKNOWLEDGMENT

This work has been performed in the context of the LOEWE
center emergenCITY.

REFERENCES

[1] IRENA, Renewable Power Generation Costs in 2019. Abu Dhabi:
International Renewable Energy Agency, 2020.

[2] A. Al-Subhi and H. Alfares, “Economic load dispatch using linear
programming:: A comparative study,” International Journal of Applied
Industrial Engineering, vol. 3, pp. 16–36, 01 2016.
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APPENDIX

TABLE I
MO PARAMETERS

c [39, 40, 71, 79, 51, 55, 70, 41, 37, 34] C/MWh
x̄ [170, 150, 160, 270, 90, 120, 80, 60, 210, 110] MWh
d 710 MWh
µ 0 MWh
Σ d2

25
MWh2

TABLE II
BS PARAMETERS

x̄ 500 MWh
∆ 300 MWh/h
cm 35.36 C/MWh
µ 0 MWh

Σij 25e
−(i−j)2

8 MWh2

TABLE III
SM PARAMETERS

c 325 C/MWh
d 0.75 MW

x̄P,13 1 MW
x̄D 1 MW
x̄p
β 0.75 MW
λ 0.99
η 0.95
x̄e
β 0.75 MWh
µ 0 MW

Σij 0.04
sin(π·i

12
)+sin(π·j

12
)

2
e

−(i−j)2

4 MW2


