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Abstract—This work targets voltage regulation in active dis-
tribution grids with imperfect observability due to limited com-
munication and sensor equipment. Specifically, the on-load tap
changer (OLTC) of distribution transformers, available voltage
regulators, and few nodal reactive power injections are to be
controlled in the presence of uncertainty about other nodal
injections or voltage levels. The problem is solved with a novel
two-stage, robust control approach for static linear systems with
measurement-dependent uncertainty sets. The proposed ideas
are demonstrated on small test feeders where OLTC positions
are controlled based on local power flow measurements. More
complex settings with additional sensors and actuators as well
as robustness against a small number of significantly disturbed
measurement signals are also shown. Results for the IEEE 123
test feeder prove the applicability to larger systems.

Index Terms—Active distribution networks, robust control,
voltage regulation.

I. INTRODUCTION

The massive integration of decentralized energy resources
into power distribution systems implies new challenges for
the network operators in order to guarantee feasible system
operation at all times [1]. In particular, the nodal voltage levels
in the network are affected by decentralized generation and
need to be actively regulated. The problem is known as the
voltage regulation or the Voltage VAr Control (VVC) problem.
It is challenging because the grid state is often highly uncertain
due to a low number of sensors in the grid, which may or may
not be connected to the control center.

VVC has been widely studied in recent years. With respect
to the assumed degree of observability of the distribution
grid, these works can be structured as follows. Many different
actuators such as the OLTC of the main transformer, reactive
power contributions of decentralized generators and capacitor
banks, or voltage regulators can be controlled by solving
central optimization problems targeting voltage feasibility at
minimal losses and minimal switching frequency of the OLTC
[2], [3]. The grid state is assumed to be fully known in these
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works. [4] estimates the grid state and accommodates for
prediction errors by employing additional security margins
for the controlled voltage levels. A stochastic optimization
approach is followed in [5]. Robust control is considered in
[6]. The considered uncertainty sets, however, are fixed and not
adaptive to available measurement values. This means that the
uncertainty set has to be larger than necessary and the control
action more conservative.

In this work, we design robust control policies for the VVC
problem. We make use of measurement dependent uncertainty
sets which allows us to balance robustness and performance.
Not only incomplete observability and measurement errors can
be considered as sources of uncertainty but also the large scale
failure of a small number of sensors, e.g., due to outages or
malicious distortions.

Like [7], we formulate the setup as an abstract static linear
system. However, we do not restrict ourselves to affine-linear
controller structures but propose to use an online two-stage
optimization approach. Given current values for the controlled
variables we can quickly check whether an adaption is nec-
essary, and otherwise save multiple costly OLTC switching
events. Our principled, automated design approach can quickly
adapt to changing system environments, e.g., in case of crises,
and thus increases the operational resilience of the system.

The paper is organized as follows. Section II presents the
adopted linear power flow model. In section III, we formally
define the conditions for an admissible VVC control policy.
Based on these conditions, we propose the novel control design
method in section IV. The resulting controller is then applied
to three different distribution feeders in section V, before we
conclude in section VI.

II. POWER SYSTEM MODELING

We adopt the linearized version of the DistFlow model
[8] for balanced radial distribution networks without losses.
Consider a radial network with N + 1 nodes connected by N
edges and let node 0 be the transformer of the distribution grid.
At node i, the active and reactive power injections, and the
voltage magnitude are denoted by pi, qi, and vi, respectively.
Moreover, pik and qik represent the active and reactive power
flowing from node i to node k. Then,



pik = −pk +
∑
k→l

pkl,

qik = −qk +
∑
k→l

qkl,

vi = vk + 2(rikpik + xikqik) + si.

(1)

The sums are taken over all existing links from node k to node
l. It is assumed that the link i → k has a series impedance
given by rik + jxik. The term si represents the effect of a
voltage regulator at node i. If there is no voltage regulator at
node i, we set si = 0 throughout.

Equations (1) are linear and the power flows pik, qik and
nodal voltages vi are determined uniquely by the combination
of the power injections pk, qk at the non-root nodes, the
voltage v0 at the root node, and the voltage impacts si of the
installed voltage regulators. We can thus call this combination
of variables the state of the system. All other quantities of
interest can be derived from it via a linear transformation.

In power grids, nodal voltages vi are typically required to
be maintained within the range of [0.9, 1.1] p.u.. In order to
guarantee such a feasible system operation, the OLTC of the
distribution transformer at the root node can be controlled to
set a voltage value v0. Moreover, the reactive power injections
qk of some of the decentralized generators may also be avail-
able for actuation. These control actions can be determined
based on local measurements at the root node, i.e., the total
power supplied p0, q0, as well as information from some points
throughout the grid, e.g., nodal voltage measurements vi at
some of the nodes with decentral generators. All state variables
have physical limitations in the form of interval constraints.
Additional constraints may apply in certain situations as
outlined in the experimental section.

III. ADMISSIBLE CONTROL LAWS

In line with [7], the described active distribution network
model can be expressed as a constrained static linear system

Ax ≤ b, y = Mx, (2)

with state vector x ⊂ RN , observation vector y ⊂ RL that is
available to the controller, and system parameters A ∈ RK×N ,
b ∈ RK , and M ∈ RL×N .

State vector x can be partitioned into the controlled vari-
ables xc, for which a control law is designed in the sequel, and
the free variables xf , that are left free to be determined either
by other users, cooperative or malicious, by fixed external
conditions, or at random. The value of xc is limited by lower
and upper bounds, i.e., xc is an element of X c = {xc : xc ∈
[xc,xc]}. The vector xf is an element of the uncertainty set
X f , which is presupposed to be a convex polyhedron. The
defined partition of x allows to partition the matrices A and
M along their columns, which yields Acxc + Afxf ≤ b and
y = Mcxc + Mfxf . We in addition define yf = Mfxf .

We are interested in finding a control law xc(yf) that can
guarantee feasible system operation, independently of the state

of the free variables xf . A controller satisfying this condition
is said to be admissible [7]. This is formalized as follows.

Definition 1 (Admissibility). The control law xc(yf) :
Mf(X f)→ X c is admissible if

∀xf ∈ X f : Acxc(yf) + Afxf ≤ b. (3)

Note that, without loss of generality, we take yf as the
argument for the control law. This allows us to simplify the
design of the controller as shown in the following. However,
one could easily rewrite the control law into the form xc(y)
since yf = y −Mcxc.

In this work, we aim at finding an admissible controller
xc(yf). This is a challenging task due to the all-quantor
operating on xf ∈ X f . In [7], we restricted possible con-
trollers to an affine-linear form which allows to develop such
controllers efficiently with the help of a suitable bounding
strategy. However, it can be shown by example that for some
situations no admissible affine-linear controller exists, whereas
non-linear controllers can fulfill all requirements. We thus
develop a novel framework for developing such non-linear
controllers based on measurement-dependent uncertainty sets
in the following.

IV. DESIGN OF ROBUST NON-LINEAR CONTROLLERS

In order to find the admissible controller, we propose the
following two-stage approach:

A. Stage 1: Task-Specific Characterization of Uncertainty Set

For a given measurement yf , we first determine the values
xf ∈ X f that maximize the impact on each system constraint
while also yielding a yf measurement. To this end, let Ai

f

denote the i-th row of Af . Also let zf ∈ RK be the vector
whose i-th entry corresponds to the maximum possible value
of Ai

fxf consistent with yf . I.e., for i ∈ {1, ...,K},

zf,i = max
xf∈X f

Ai
fxf

s.t. yf = Mfxf .
(4)

Expression (4) is a linear optimization task that can be solved
very efficiently. Note first that the considered uncertainty set
is measurement-dependent. It is typically smaller than the full
set without considering the available measurements. Thus we
can obtain less conservative controls below. Moreover, we do
not need to compute all extremal points of the uncertainty set
but only those with maximal impact on the constraints. Since
the number of all extremal points of the uncertainty set scales
exponentially with the dimension of X f but the number of
constraints is fixed and finite, this is a key step to render the
approach computationally feasible.

B. Stage 2: Robust Control Computation

Once the entries of zf are determined, a value for xc has
to be determined such that Acxc + zf ≤ b. Note that such
a value for xc will guarantee the fulfilling of the operational
constraints for all possible realizations of xf associated to the
measurement yf . Although there are often multiple feasible



choices for xc, we propose to choose the value that maximizes
the distance β to a constraint violation, for all constraints. I.e.,
we solve the linear program (LP)

min
xc,β

β

s.t. Acxc + zf ≤ b+ β,

xc ≤ xc ≤ xc.

(5)

If β < 0, the computed control xc is admissible. The computed
value of xc may still be valid for another measurement y′f ,
yielding another z′f , as long as Acxc + z′f ≤ b still holds.
This property is exploited next to compute values for xc(yf)
over time.

C. Minimal Action Sequential Control

In practice, the controlled variables xc are often computed
periodically based on the current measurements yf in order
to adjust the system to new situations. However, it is not
desired to adapt the OLTC voltage at each iteration due to
economic and technical reasons. We therefore propose to adapt
an existing xc only if its current value leads to a constraint
violation. In each iteration, the current measurement y is read,
which allows to calculate yf = y −Mcxc. After solving the
LP (4), we can compute how far each constraint is from being
violated,

θ = Acxc + zf − b. (6)

If maxi θi ≤ 0, then xc still fulfills the constraints of the
system and no adaptation step is required. Otherwise, xc is
adapted by solving LP (5).

A further option to speed up the iterative control loop
in cases where yf is low-dimensional is to precompute all
possible values xc(yf) and store them in a look-up table.

D. Corrupted Measurements

So far we have assumed that the measurements available
to the controller are exact. They may, however, be subject
to (typically small) measurement errors. More challenging,
they may also be completely off either due to technical errors
during transmission or due to malicious attacks on parts of the
system. In the following, we extend our approach so that it can
tolerate the manipulation of a small number of the available
measurements – without the need to know or identify the exact
subset of disturbed sensors. Smaller measurement errors can
be solved in a similar fashion but are not the focus here.

Now, we first introduce the true measurement ytrue
f , which

is corrupted by an uncertain additive component ∆yf affecting
only k unknown elements of ytrue

f . The measurement available
to the controller is then given by

yf = ytrue
f + ∆yf , ∆yf ∈ [∆y

f
,∆yf ]. (7)

The j-th entry of ∆yf is zero if the j-th measurement is not
manipulated. In addition, the boundaries ∆y

f
and ∆yf specify

the minimum and maximum plausible measurement deviation.
They can, e.g., be computed using the constraints on the state
variables and yf = Mfxf .

1) Exact formulation: Let uf ∈ {0, 1}L be the binary
decision variable whose jth-entry is one if the jth-entry of yf

is corrupted, and zero otherwise. Since only k measurements
are affected by ∆yf ,

1Tuf ≤ k (8)

has to be fulfilled. Then, the uncertainty set for ∆yf can be
expressed as

∆Y f = {∆yf ⊂ RL : ∆y
f
◦ uf ≤ ∆yf ≤ ∆yf ◦ uf}. (9)

Here, ◦ denotes the Hadamard product. Using (8), (9), and the
given measurement yf , the maximum impact of xf on the i-th
constraint of the system, provided that the measurement yf

has k corrupted elements, can be found for i ∈ {1, ...,K} by
solving the following mixed-integer linear program (MILP)

zf,i = max
xf∈X f ,∆yf ,uf

Ai
fxf

s.t. yf = Mfxf + ∆yf ,

1Tuf ≤ k,
∆y

f
◦ uf ≤ ∆yf ≤ ∆yf ◦ uf ,

uf ∈ {0, 1}L.

(10)

Once the vector zf is determined, the value xc can be
computed as before by solving LP (5).

2) Linear Approximation: Although MILP (10) already
provides an efficient procedure to tackle k corrupted mea-
surements, it can be computationally demanding for large K
and large dimensions of xf . To improve the efficiency of
the algorithm, we approximate the uncertainty set of ∆yf

by relaxing the integer constraint uf ∈ {0, 1}L to the box
constraints 0 ≤ uf ≤ 1. In this manner, we can determine
the maximum impact of xf on the i-th system constraint,
i ∈ {1, ...,K}, for a given measurement yf having k corrupted
elements via the LP

zf,i = max
xf∈X f ,∆yf ,uf

Ai
fxf

s.t. yf = Mfxf + ∆yf ,

1Tuf ≤ k,
∆y

f
◦ uf ≤ ∆yf ≤ ∆yf ◦ uf ,

0 ≤ uf ≤ 1.

(11)

V. APPLICATION EXAMPLES

The proposed algorithm is now demonstrated with simula-
tions of active distribution networks. First, two explanatory
distribution feeders of small size are studied. Thereafter,
the scalability of our algorithm is verified using a modified
version of the IEEE 123 bus test case. The algorithms were
implemented in Matlab, using CPLEX as LP/MILP solver, and
YALMIP [9] as modeling language.



A. 3 Node Distribution Feeder

Fig. 1 (a) shows a simple distribution feeder with two loads
and two photovoltaic (PV) units. The setup – although strongly
simplified – resembles a typical situation in today distributions
with high PV penetration. The impedance of each line segment
is assumed to be 0.03 + j0.06 p.u. High PV-infeeds at low
loads lead to voltage rises towards the end of the feeder, high
loads without PV production to voltage drops. Keeping the
nodal voltage levels within [0.9, 1.1] p.u. thus represents the
relevant operational constraint, while transmission limits are
not relevant here.

The PV units generate active power depending on the
weather conditions, with maximum capacity of 1 p.u. We
assume that the geographically closeness of the PV units leads
to strong coupling of their production, i.e., both PV units
produce the same power in each time step. This behavior is
modeled by the interval uncertainty set shown in Fig. 1 (b).
The maximum load at each node is assumed to be 1 p.u.,
but we limit the joint demand to 50% of the sum of the
individual peak demands, resulting in the uncertainty set
shown in Fig. 1 (c). The uncertainty set for the combined
active power injections is illustrated in Fig. 1 (d).

We assume in this example that the PV units do not inject
reactive power to the network, leaving the OLTC of the
distribution transformer as the unique controllable actuator to
regulate the voltage.

We first study the case in which there is no information
available online to set the voltage v0 via the OLTC, meaning
that a constant voltage v0 should be valid for all active
power injections in the uncertainty set. For this setup, the
maximum impact of the uncertain active power injections on
the system constraints is computed via LP (4). Subsequently,
we solve LP (5) and obtain β > 0. This means that the
current actuator/sensor equipment does not allow for the
design of an admissible control law, i.e., there is no constant
v0 guaranteeing feasible system operation in all cases.

Now we integrate the measurement of the nodal active
power at the root bus into the control system, which is a com-
mon local measurement available to OLTC controllers. The
new controller setup admits an admissible control law since by
applying the proposed two-stage algorithm we can determine
a feasible value v0 for each possible power measurement p0

in the range [−1, 2] p.u., see Fig. 1 (e). In case of high PV
generation, voltage v0 is set to its lower bound, independently
of the load values. In contrast, when there is no PV generation
and one of the loads reaches its peak value, voltage v0 is set to
1.09 p.u., close to its maximum allowed value. As expected,
the voltage v0 increases gradually with the power p0 provided
by the transformer.

Unlike the following examples, this small test case could be
solved intuitively, but serves to validate the proposed approach.

B. 11 Node Distribution Feeder

Now we apply the control algorithm proposed in IV to
simulate the operation of the 11 node feeder shown in Fig. 2
for one day. The system has active power loads of up to 1 p.u.
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Fig. 1: Exemplary active distribution feeder subject to un-
certain active power loads and coupled PV production. (a)
Topology of the network with specified operation limits for
loads and PV units. (b) The blue line corresponds to the
uncertainty set for the active power generated by the PV units.
(c) The blue region models the uncertainty for the loads. (d)
The uncertainty set for the active power injections (shaded) is
obtained by combining the sets (a) and (b). (e) Optimal voltage
set point v0 as a function of the active power p0 provided by
the distribution transformer.

connected to nodes {1, 2, 4, 8, 9}, PV units with capacity of
1 p.u. are connected to nodes {3, 5, 6, 7, 10}. With exception
to the PV unit at node 7, which has a reactive power capacity
of ±0.2 p.u., all remaining PV units operate with a power
factor of 1. The impedance of each line segment is assumed
as 0.002 + j0.006 p.u.

The voltage at node 0 is controlled via the OLTC within
the operation interval of [0.9, 1.1] p.u. In addition, the reactive
power injection of the PV unit at node 7 can also be controlled.
The control system has access to the measurement of the
nodal voltages at nodes {3, 7, 10} as well as the active power
provided by the transformer.

As above, the production of the PV units is assumed to be
coupled. The PV generation follows the profile of a sunny
day as shown in Fig. 3 (a). Power consumptions are modeled
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Fig. 2: 11 node distribution feeder with 5 loads and 5 coupled
PV units. The controller sets the OLTC voltage v0 and the
reactive power injection of the PV unit at node 7 (red boxes)
based on the available measurements (green boxes).

as individual random processes with uniform distribution.
Fig. 3 (b) shows the resulting load profiles together with the
total load over time. The controller determines new control set
points every 5 minutes.

Initially, the controller is designed for the case of having
non-corrupted measurements. Using the proposed minimal
action control algorithm based on LP (4), we obtain the
optimal trajectory for v0 depicted in Fig. 3 (c). In this scenario,
the voltage at the distribution transformer has to be adjusted
only two times. As expected, the maximum nodal voltage in
the network coincides with v0 during the hours of low PV
generation. In contrast, the value of v0 corresponds to the
minimum nodal voltage in the network during the peak PV
generation hours. During the day, the lowest nodal voltage lev-
els were reported at nodes {0, 1, 2, 4, 8, 9, 10}, and the highest
at nodes {0, 5, 6, 7, 10}. This indicates that the identification
of critical nodes in the feeder is not trivial when having a high,
non-uniformly spread penetration of decentralized generation
in the network.

Subsequently, we design the controller to support the ma-
nipulation of up to k = 1 measurement, which is unknown
to the controller. We define the interval boundaries of ∆Y f

for the voltage measurements as 0.5 p.u. in both directions.
To check the validity of the approach, we artificially alter the
voltage sensor at bus 10 with a constant offset of 0.3 p.u. in
our simulation. This voltage manipulation is unknown to the
controller.

Interestingly, the obtained control solution for v0 using the
MILP formulation (10) for dealing with corrupted measure-
ments is almost identical as the solution for the undisturbed
case. This demonstrates well that our proposed approach is
robust to this large distortion.

When computing controller values based on the relaxed
LP formulation (11) for dealing with corrupted measurements
we obtain a slightly different solution for the v0 values, see
Fig. 3 (d). Due to the relaxation, the size of the uncertainty set
increases and the computed the worst-case upper and lower
voltages show a wider corridor than before. This forces the
algorithm to adapt the control values more often. Nevertheless,
the voltage is adapted only 4 times during the day.

Fig. 3 (e) shows the resulting trajectories for the reactive
power to be injected by the PV unit connected at node 7.

By choosing one of the approaches, users can make their
preferred choice in the trade-off between the slightly higher
computational requirements for the MILP approach and its
superior solution quality.

C. Modified IEEE 123 Bus Test Feeder

To validate the scalability of the proposed control algo-
rithms, we briefly present its application to a modified version
of the IEEE 123 bus test case [10], see Fig. 4 (a). We install
a total of 36 PV units with a capacity of 50 p.u. in the grid,
assuming power factor 1 for all of them. The control center
is able to control the voltage v0 at the main tranformer as
well as the voltage regulators at nodes 9, 25, and 118. The
measurement set consists of the active power injection at node
0 and the nodal voltages at a few of the PV units that are
assumed to be connected to the control center. A maximum
of k = 2 sensors are assumed to be subject to exogenous
manipulation with an uncertainty set ∆Y f defined identically
as in the previous section. As before, the PV production
is taken as coupled, each of them following the generation
profile shown in Fig. 3 (a). The active and reactive power
loads are modeled uniformly random, with peak values as
specified in [10]. The average total active and reactive loads
for the simulated time window are 1500 p.u. and 500 p.u.,
respectively. The simulated voltage measurements available to
the controller are manipulated for two sensors, via an offset
of 0.4 p.u. The disturbed subset is unknown to the controller.

Every 5 min, the controller determines the value of the
controlled variables for the given measurements to guarantee
nodal voltage levels within the interval [0.9, 1.1] p.u.. By
applying the proposed minimal action control concept based
on MILP (10), we obtain the trajectories for the controlled
variables depicted in Figs. 4 (b) and (c). Observe how the
minimum and maximum voltages, that the controller must
assume possible in the grid due to its uncertainty assump-
tions, are closed to the operational limits during almost the
whole simulation day. This results in 5 switching operations
during the day. The voltage regulators change their value
synchronously with v0. The solver time for each iteration of
the control algorithm is about 9 secs on an i5 notebook with
8GB of RAM.

VI. CONCLUDING REMARKS & OUTLOOK

This paper presents a novel robust control technique for
constrained static linear systems based on two-stage optimiza-
tion. The potential of the proposed ideas is demonstrated
in its application to voltage regulation in active distribution
networks subject to corrupted measurements. Future work will
focus on the design of control laws tolerating also the targeted
manipulation of a small subset of the actuators.
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Fig. 3: Simulation of the robust minimal action control for the
11 node distribution feeder of Fig. 2 during a sunny day.

(a) Topology of the modified IEEE 123 bus test case.
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(b) OLTC voltage v0 and maximal/minimal possible voltages
throughout the grid assuming up to two corrupted measurements,
see MILP (10) with k = 2.
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Fig. 4: Simulation of the VVC control for the modified version
of the IEEE 123 bus test case during a sunny day. In (a)
the red circle represents the root node, whose nodal volt-
age is controlled and active power measured. Red diamonds
symbolize locations of controllable voltage regulators. Nodes
with PV units are marked with the blue, green, or orange
triangles. Green and orange marks indicate that the local
voltage is available to the control center. Orange implies that
the measurement is distorted.
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