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Admissible Control Laws for Constrained Linear
Power Flow: The General Case

Edwin Mora and Florian Steinke

Abstract—Linearized power flow with line flow and voltage
constraints can be modeled as a system of linear inequalities
depending on the power injections. When some injections are
controlled by the grid operator while others are determined
exogenously, robust control aims at determining grid operator’s
actions under imperfect system observability such that the grid
state is feasible for all possible realizations of the exogenous
actions. It was shown how to design and analyze such admissible
control policies efficiently for the subclass of affine control laws,
but this paper shows that there are important cases that require
more general control policies. We show that, for the constrained
linear power flow setting, general admissible control policies can
always be chosen as piecewise affine (PWA) mappings. The PWA
mapping can be explicitly characterized offline or control actions
can be computed online by solving an optimization problem
given a current observation. For the latter setup, we provide
an algorithm that verifies offline that the online control scheme
is admissible. This verification step is a crucial precondition to
apply the online control scheme in real, safety-critical power
grids. The proposed framework is demonstrated with applications
to voltage regulation in active distribution grids subject to
uncertain prosumers and low observability.

Index Terms—Admissible control law, imperfect observability,
multiparametric programming, robust power flow, verification
algorithm.

NOMENCLATURE

j ∈ C Imaginary unit j =
√
−1.

rij ∈ R>0 Resistance of the line connecting buses (i, j).
xij ∈ R>0 Reactance of the line connecting buses (i, j).
pi ∈ R Active power injection at bus i.
qi ∈ R Reactive power injection at bus i.
si ∈ C Apparent power injection at bus i.
vi ∈ R>0 Voltage magnitude at bus i.
η ∈ R Feasibility indicator.
x ∈ Rnx Grid state (e.g., voltage magnitudes or angles).
u ∈ Rnu Control action.
d ∈ Rnd Exogenous action.
y ∈ Rny Vector of measured quantities.
ŷ ∈ Rny Observation (part of y associated to d).
X ⊂ Rnx Set of feasible grid states.
U ⊂ Rnu Set of control actions.
D ⊂ Rnd Set of exogenous actions.
Ŷ ⊂ Rny Set of possible observations.
nz ∈ Z>0 Number of operational constraints.
1 Vector of ones of suitable dimension.
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I. INTRODUCTION

Today’s power grids face increasing operational challenges
due to the variability and uncertainty of various power in-
feeds. Next to classic load uncertainty considerations, photo-
voltaic (PV) fluctuations play an increasing role, often leading
to undesired over- and/or undervoltages in distribution grids
[1]. The charging of electric vehicles may lead to power
overloads in lines and transformers [2]. Transmission grids
have to react flexibly to the aggregated uncertainties arising
from the distribution grids but also to centralized sources of
variability such as large wind parks [3]. Since at the same time
more and more sensors and actuators are available in the grids,
suitable controllers can alleviate many of these challenges.

The control of power grids at steady state with uncertain
in-feeds can be based on stochastic [4]–[6] or robust [3], [7],
[8] principles. Robustness means that for any realization of
the uncertain factors, the system remains in a feasible state.
This criterion has been used in [8] to efficiently compute affine
control laws for linearized power flow problems with line flow
or voltage constraints and static, time-constant uncertainties.
However, the simulation experiments presented in this paper
show that, within this setup, there are relevant situations
where an admissible affine control law does not exist, but a
more general admissible control law does. This motivates the
following research questions addressed in this paper: What
are the properties of such more general admissible control
laws? How can we prove their existence and compute them
efficiently?

Previous work investigated a two-stage optimization algo-
rithm [9] that uses a given system observation to determine
on-the-fly a control action guaranteeing the feasibility of the
grid state independently of the uncertain power in-feeds, if
possible. The present paper complements this work with sev-
eral novel contributions related to real-time optimal power flow
approaches [10]. First, we show how to explicitly characterize
the complete control law offline using multiparametric linear
programming techniques [11]–[13]. This is the key to prove
that for the constrained linear power flow setting general ad-
missible control laws can always be chosen as PWA mappings,
where each affine piece is defined on a convex polytopic set.
This is a non-trivial derivation from multiparametric linear
programming theory since, unlike common applications where
the right-hand side or the objective of the associated linear
program (LP) are varied, in our case the system matrix is
varying parametrically. Given this novel characterization, one
can store the PWA control law in a parametric form similarly
to explicit model predictive control approaches [14], [15].

Since the explicit form may have exponentially many pieces,
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it may often be more efficient to stay with online computations
or to combine explicit and online computations [16]. However,
in this case, it is important to know prior to the controller
implementation whether the online computations will always
result in control actions that lead to feasible system states.
A second novel contribution of this paper is an algorithm
that checks this admissibility condition offline. The proposed
approach is based on a non-convex Quadratically Constrained
Quadratic Program (QCQP). It is derived from an equivalent
one-stage formulation of the two-stage optimization algorithm
obtained by applying duality theory [17]. The contribution
is a key enabler to deploy the online control scheme, and
thereby general PWA control laws, in practical, safety-critical
infrastructures. Grid operators need to be sure about the
admissibility of the controller already in the planning stage.

The theoretical results and algorithms obtained in this paper
are evaluated with two examples of voltage regulation in distri-
bution grids subject to uncertain prosumers and limited observ-
ability and controllability. First, a demonstration of all design
steps is conducted for a simple 3 bus feeder. Subsequently, the
proposed techniques are applied to a modified version of the
IEEE 123 bus test case with high penetration of PV. In both
cases, the performance of the obtained control laws is assessed
within the assumed linear model as well as with non-linear
Alternating Current Power Flow (ACPF) simulations.

The rest of this paper is organized as follows. Section II
reviews the theory on admissible control laws for constrained
static linear power flow systems from [8], [9]. Section III
presents an algorithm to explicitly compute the full control law
(if it exits) and provides the proof of its characterization as a
PWA mapping. Section IV introduces the QCQP that verifies
the admissibility of the online control scheme. Section V
explains an implementation trick that reduces the computa-
tion time of the QCQP by orders of magnitude. The power
system application examples are presented and discussed in
Section VI, before concluding in Section VII.

II. BACKGROUND

This section reviews the modeling of constrained linear
power flow at steady state as a set of linear (in)equalities.
The proposed modeling technique can be applied to both
transmission and distribution grids as explained in [8], [9]
and is illustrated with a simple distribution feeder example.
Subsequently, we review the definition of admissible control
laws for such systems as introduced in [8].

A. Power Flow as a Constrained Static Linear System

Consider an abstract, linear, steady state power flow repre-
sentation of the form

x = Bu+ Fd, (1)

where x ∈ Rnx is the state of the power grid, which is defined
by, for example, the nodal voltage magnitudes.1 The state is

1Depending on the application, the state x can be defined in terms of
the voltage magnitudes, the voltage phase angles, or a combination of both.
The proposed abstract representation also admits a state definition in terms of
the real and imaginary part of the voltages. Please refer to [18] for a recent
review on power flow modeling.

determined by the control action u ∈ Rnu and the exogenous
action d ∈ Rnd . The control action u models quantities
that the grid operator can manipulate. They comprise, for
instance, the nodal active or reactive power to be injected by
controlled generation units or the tap position of transformers.2

The exogenous action d represents the power injections being
determined by other system users, e.g., the power demand or
the active power generated by decentralized, non-controlled
generation units. The matrices B ∈ Rnx×nu and F ∈ Rnx×nd

are assumed to be known to the grid operator. They can be
derived from the physical grid parameters as discussed below.

In power grid operations, the grid operator periodically
determines the value of the control action u based on available
information about the state x of the grid. However, the vector
quantities x and d are usually not directly accessible to the
grid operator due to technical, economical, or privacy reasons.
Instead, a typically small number of measured quantities
y ∈ Rny are available. Examples of measured quantities are
line flows, nodal voltage magnitudes, or nodal power in-feeds.
We assume that the measured quantities y are also determined
linearly by the state x which, under consideration of (1), can
be expressed in terms of the actions (u,d) in the form

y = Nu+Md, (2)

where the matrices N ∈ Rny×nu and M ∈ Rny×nd are
assumed to be known to the grid operator.

In practical applications, the quantities (x,u,d) have to
fulfill a set of engineering requirements. Depending on the
application, there are pre-specified ranges of admissible values
for the nodal voltage magnitudes as well as for the power
capacity of the transmission lines and transformers. The power
produced/consumed by both controlled and uncontrolled pro-
sumers in the grid is also subject to technical limitations.

We thus define u ∈ U ⊂ Rnu and d ∈ D ⊂ Rnd , where
the set of control actions U and the uncertainty set D are
assumed to be convex polytopes, i.e.,

U = {u ∈ Rnu: Ru ≤ r}, D = {d ∈ Rnd: Td ≤ t}. (3)

The parameters R ∈ Rlu×nu , r ∈ Rlu , T ∈ Rld×nd , and
t ∈ Rld are supposed to be known a priori. In addition, we say
that the state x is feasible if it is in feasibility set X ∈ Rnx .
The feasibility set X is assumed to be defined by a set of
linear inequalities of the form Ex ≤ b, with a priori known
parameters E ∈ Rnz×nx and b ∈ Rnz . Due to the linear
relation (1) between the state x and the actions (u,d), the
state is feasible if the actions fulfill

Gu+Hd ≤ b, (4)

where G = EB and H = EF.
A constrained linear, steady state power flow system is

then fully described by the linear (in)equalities (2)–(4). This
modeling framework was applied to solve power flow control
problems in both transmission [8] and distribution grids [9].
In the following, we illustrate how to apply it to an exemplary
distribution feeder.

2Note that the control action u is defined here in a continuous space.
The simulation experiments discussed in Section VI illustrate how to adapt
the proposed control strategies to discrete control actions.
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Example 1. Consider the power distribution feeder shown in
Fig. 1. The feeder has two prosumers, the first connected to
bus 1 and the second to bus 2. The substation transformer
located at bus 0 is connected to bus 1 through a transmission
line. This transmission line is modeled as a series impedance
with resistance r01 ∈ R>0 and reactance x01 ∈ R>0. Another
transmission line with electrical parameters r12 ∈ R>0 and
x12 ∈ R>0 connects buses 1 and 2. The goal of the grid
operator is to keep all voltage magnitudes always within the
limits v ∈ R>0 and v ∈ R>0.

The distribution feeder can be modeled by using a lossless,
linearized version of the DistFlow equations [19], [20].3 The
voltage magnitudes v1, v2 ∈ R are then influenced linearly by
the voltage at the root node v0 as well as by the active and
reactive power injections p1, p2 ∈ R and q1, q2 ∈ R. Using
the active sign convention for power, the resulting system of
linear (in)equalities for the voltage magnitudes is given by[

v
v

]
≤

[
v1
v2

]
≤

[
v
v

]
⇒

[
I

−I

]
︸ ︷︷ ︸

E

[
v1
v2

]
︸︷︷︸
x

≤
[

v1
−v1

]
︸ ︷︷ ︸

b

and [
v1
v2

]
︸︷︷︸
x

=

[
1
1

]
︸︷︷︸
B

v0︸︷︷︸
u

+

[
r01 0 x01 0
r01 r12 x01 x12

]
︸ ︷︷ ︸

F


p1
p2
q1
q2


︸ ︷︷ ︸
d

,

where the identity matrix I and the vector of ones 1 have
appropriate dimensions. Further, the measured quantities given
in Fig. 1 comprise the active and reactive power at the
substation transformer (p0, q0), which yields

[
p0
q0

]
︸︷︷︸
y

=

[
0
0

]
︸︷︷︸
N

v0︸︷︷︸
u

+

[
−1 −1 0 0
0 0 −1 −1

]
︸ ︷︷ ︸

M


p1
p2
q1
q2


︸ ︷︷ ︸
d

.

As illustrated in Fig. 1, the grid operator can manipulate
the voltage magnitude v2 based on the power at the substation
transformer. The power injections at buses 1 and 2 thus
represent exogenous actions being uncertain to the controller.
Note that the control action space U is defined by the interval
of admissible voltages at bus 0, i.e., U = [v, v]. The
uncertainty set D is given by the Cartesian product of intervals

D = [p
1
, p1]× [p

2
, p2]× [q

1
, q1]× [q

2
, q2].

The parameters (R, r,T, t) can readily be obtained from the
above definitions of U and D.

For the grid of Example 1, the grid operator has to ensure
the feasibility of the state for all possible realizations of the
uncertain power injections d ∈ D. To this end, the operator
has to find, if possible, an admissible control law u = k(y),
with u = v0 and y =

[
p0 q0

]T
. The concept of admissible

control law was introduced in [8] and is reviewed next.

3The choice of the lossless, linearized Distflow model is not necessary. It
has only the aim of illustrating how to apply the control strategies proposed
in this paper to voltage regulation in active distribution grids.

v0 v1 v2

p
2
≤ p2 ≤ p2

q
2
≤ q2 ≤ q2

p
1
≤ p1 ≤ p1

q
1
≤ q1 ≤ q2

r12, x12r01, x01

Grid operator

p0

q0

Fig. 1. Single line diagram of a simple distribution feeder with voltage control.
The grid operator periodically manipulates the voltage level v0 (the red box)
based on measurements of the power (p0, q0) at the substation transformer
(the boxes filled in green). The power at buses 1 and 2 is not determined by
the grid operator, but by independent electricity prosumers. The grid operator
can, however, assume bounds on these uncertain prosumers.

B. Admissible Control Laws

As indicated above, the grid operator makes periodic deci-
sions on how to suitably adapt the value of the control action
u based on the measured quantities y by implementing a
control law u = k(y). Here it is important to note that, in
the steady state setting, the control law u = k(y) defines
a recursive mapping as the value of y also depends on the
choice of u according to (2). However, the control law can
also be expressed in terms of the part ŷ of y related to the
exogenous action d only, since the control action u is known to
the grid operator and its influence on y can be subtracted, i.e.,
ŷ = y −Nu. This approach is shown in Fig. 2. We can thus
equivalently consider the alternative control law u = k̂(ŷ),
where ŷ = Md is from now on called the observation.

The control law u = k̂(ŷ) has to be designed such that it
guarantees a feasible grid state independently of the value of
the exogenous action d ∈ D. If the control law u = k̂(ŷ)
satisfies such condition, then we say that it is admissible. This
idea is formalized as follows.

Definition 1. The control law k̂ : Ŷ → U is admissible if

∀d ∈ D : Gk̂(ŷ) +Hd ≤ b, (5)

with ŷ = Md and Ŷ = M(D).

Note in Definition 1 that the admissibility property of the
control law u = k̂(ŷ) is defined for the constrained linear
power flow setting assumed in this paper. A formal analysis
on the admissibility of control laws for the constrained non-
linear ACPF setting is beyond the scope of this paper.

Definition 1 is exploited in subsequent sections to derive
algorithms for verifying the existence of admissible control
laws for a given constrained linear power system (2)–(4) and,
if possible, computing an admissible controller realization.

III. COMPUTING ADMISSIBLE CONTROL LAWS

The control law computation task consists of finding the
mapping u = k̂(ŷ) that assigns a control action u ∈ U to
each observation ŷ ∈ Ŷ such that condition (5) is fulfilled.
Depending on the application, the control law u = k̂(ŷ) can
be expressed in several manners. For instance, the control
law can be provided either in explicit, analytical form, or as
a mathematical optimization problem to be solved on-the-fly
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yu (Linearized)

power grid

N

k̂(ŷ)

Grid operator

ŷ

d

−

Fig. 2. The control scheme used in this paper. Given a linear representation
of the power flow (2)–(4), the grid operator chooses the control action u ∈ U
based on the part of the measured output y that captures the influence of the
exogenous action d ∈ D, i.e., ŷ = y −Nu = Md.

whenever a new observation is available. The former approach
is called offline computation of the control law in this paper,
the latter online.

A simple example for an offline computable control law is
the affine mapping u = K̂ŷ+ ŵ, where the controller param-
eters K̂ ∈ Rnu×ny and ŵ ∈ Rnu are to be designed such that
the admissibility condition (5) is fulfilled. In previous work [8]
we show that, if an admissible affine control law exists, then
the controller parameters (K̂, ŵ) can efficiently be found by
solving a LP. However, the affine linearity assumption is overly
restrictive, i.e., there exist relevant cases where no admissible
affine control law exists, but a more general control law does.
This is illustrated with the use cases presented in Section VI.
The following section introduces online and offline approaches
for computing general admissible control laws, if they exist.

A. Online Two-stage Approach

The control action u can be computed online for a given ob-
servation ŷ ∈ Ŷ through the two-stage optimization algorithm
described next.

1) Observation-dependent Worst-case Characterization:
For any given observation ŷ ∈ Ŷ , the algorithm first seeks
the exogenous actions in the set D that maximize the impact
on each constraint of the system (5) and that are consistent
with the observation.

For each j = 1, ..., nz , let Hj ∈ R1×nd represent the jth
row of H and ẑj : Ŷ → R be the mapping that outputs
the maximum possible value of Hjd that is consistent with
observation ŷ. The mapping ẑj(ŷ) is defined by the LP

ẑj(ŷ) = max
d∈Rnd

Hjd

s.t. Md = ŷ,

Td ≤ t.

(6)

Observe in LP (6) that the decision variable d is subject to an
observation-dependent uncertainty set.

2) Control Action Computation: By solving LP (6) for the
given ŷ and for all j = 1, ..., nz , we obtain the value of the
vector-valued function ẑ(ŷ) which is then used to compute
the control action u by solving the following LP

u = k̂(ŷ) = argmin
u′∈Rnu

min
η∈R

η

s.t. Gu′ + ẑ(ŷ) ≤ b+ η1,

Ru′ ≤ r.

(7)

Note in LP (7) that the decision variable η represents a
feasibility indicator for the resulting u. In other words, if for
a given observation ŷ the corresponding optimal value of η is
at most zero, then the associated control action u guarantees
a feasible system state. In the following, we use the notation
η⋆(ŷ) when referring to the optimal value of η associated to
ŷ. The control law implied by LPs (6)–(7) is hence admissible
if the condition η⋆(ŷ) ≤ 0 is fulfilled for all possible ŷ ∈ Ŷ .

If approximate solution methods for the LPs are used, the
total error of the two-stage approach can be controlled as
follows. Suppose LP (6) is solved to accuracy ϵ1, then ẑj(ŷ)
is known up to this accuracy. ẑj(ŷ) enters LP (7) in the first
constraint block, thus, the computed η might then be wrong
by up to ϵ1. If LP (7) is solved to accuracy ϵ2, then the total
error of the resulting η is bounded by ϵ1 + ϵ2.

Choosing η as the objective function of LP (7) simplifies
in Section IV the derivation of an algorithm for verifying
the admissibility of the control law implied by LPs (6)–(7).
However, if the existence of an admissible control law is
guaranteed, the objective function of LP (7) can be chosen
differently depending on the application, e.g., by removing
the decision variable η and then introducing a linear or convex
quadratic cost function of u. This is illustrated in Section VI.

B. Online One-stage Approach

Computing the control action through the two-stage ap-
proach (6)–(7) is computationally efficient [9]. Nevertheless, it
is useful to transform it into an one-stage LP for two reasons.
The one-stage LP helps us prove that an admissible control
law u = k̂(ŷ) can always be chosen as a PWA mapping. It is
also the key to obtain in Section IV an algorithm that verifies
the admissibility of the control law implied by LPs (6)–(7).

The one-stage LP formulation is obtained as follows. First,
observe that the two-stage formulation (6)–(7) can be equiva-
lently expressed as

u = k̂(ŷ) = argmin
u′∈U

min
η∈R

η

s.t. Gu′ +


max
d∈D

H1d s.t. Md = ŷ

...
max
d∈D

Hnzd s.t. Md = ŷ


︸ ︷︷ ︸

ẑ(ŷ)

≤ b+ η1. (8)

Since the jth entry of ẑ(ŷ) with j = 1, ..., nz yields
the optimal cost of an always feasible linear maximization
problem, strong duality [17] holds and the jth maximization
problem can be replaced with its dual, namely

ẑj(ŷ) = min
ρj∈Rny ,

λj∈Rld
≥0

ρjTŷ + λjTt

s.t.
[
MT TT

] [ρj
λj

]
= HjT,

(9)
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where ρj ∈ Rny and λj ∈ Rld
≥0 symbolize the dual variables

associated to the constraints Md = ŷ and Td ≤ t of the jth
LP (6), respectively. The control action u associated to the
observation ŷ can then be computed via the LP formulation

u = k̂(ŷ) = argmin
u′∈Rnu

min
η∈R,

ρ1,...,ρnz∈Rny ,

λ1,...,λnz∈Rld
≥0

η

s.t. Gu′ +

 ρ
1T

...
ρnzT

 ŷ +

 λ
1T

...
λnzT

 t− η1 ≤ b,

[
MT TT

] [ρ1 · · ·ρnz

λ1 · · ·λnz

]
= HT,

Ru′ ≤ r.

(10)

Note that, when replacing the nz instances of LP (6) with
their duals in expression (8), moving the inner minimization
operator over (ρ,λ) to the outer level leads to the equivalent
formulation (10) since any optimal solution of (10) is feasible
for (8)–(9) yielding the same objective value and vice versa.

Formulation (10) is a LP for a fixed observation ŷ. As
formulations (10) and (6)–(7) are equivalent, the control law
u = k̂(ŷ) implied by LP (10) is admissible if the condition
η⋆(ŷ) ≤ 0 is fulfilled for all possible ŷ ∈ Ŷ . 4

C. Offline Approach

Instead of solving either LP (10) or LPs (6)–(7) online, we
now focus on finding an explicit, closed-form representation
for the control law u = k̂(ŷ) over all ŷ ∈ Ŷ . This is
particularly beneficial for small-sized problem instances since
the computation of the control action u turns into evaluating an
analytic function of the observation ŷ. Even more interestingly,
the offline approach proposed next yields the proof that
admissible control laws for the constrained linear power flow
setting (2)–(4) can always be chosen as PWA mappings.

Closed-form expressions for the control law u = k̂(ŷ) can
be computed by solving LP (10) for all possible observations
ŷ ∈ Ŷ . This task corresponds to computing the explicit
solution of a multiparametric linear program (MPLP) with
parametric system matrix, since for each j = 1, ..., nz the
parameter ŷ appears multiplied with the optimization variable
ρj in the first set of inequality constraints in formulation (10).

When the right-hand side or the objective of a MPLP are
parametric it is known that the solution functions are PWA
[21] and the associated regions in the parameter space, the so-
called critical regions, convex polyhedra [13]. If the system
matrix is parametric, as in our case, both characterizations
are not necessarily fulfilled as can be deduced from [22,
Theorem 4.3]. This makes computing and storing an explicit
solution representation not easy in general.

However, we can show that for our special problem instance
the two properties are still fulfilled. This allows us to compute
and store a closed-form expression of u = k̂(ŷ) with known
software tools.

4It is shown in Section VI that the solver time of the two-stage approach
(6)–(7) often outperforms the solvet time of the one-stage approach (10).

Theorem 1. The control law implied by LP (10) is a PWA
mapping with pieces defined on convex polytopes.

Proof. To proof Theorem 1, we return to the two-stage ap-
proach (6)–(7) for computing the control law, but now in a
parametric fashion.

1) Closed-form of the Mapping ẑ(ŷ): The first-stage LP (6)
is a MPLP with right-hand side parameter ŷ ∈ Ŷ . Since the
set D is a convex polytope, the set Ŷ = M(D) is also a
convex polytope and the following results apply.

Corollary 1 ( [21] ). For any j ∈ {1, ..., nz}, the mapping
ẑj : Ŷ → R defined as in (6) is piecewise affine, continuous,
and concave.

Corollary 2 ( [13] ). For any j ∈ {1, ..., nz}, the critical
regions of Ŷ associated to the mapping ẑj(ŷ) are convex
polytopes.

Now note that instead of computing the parametric solution
of each mapping ẑj(ŷ) separately we can equivalently com-
pute parametric solution of the vector-valued mapping ẑ(ŷ)
by means of the single, larger formulation

ẑ(ŷ) = argmax
ẑ∈Rnz

max
d̂1,...,d̂nz∈D

1Tẑ

s.t. ẑ =

 H1d̂1

...
Hnz d̂nz

 ,

Md̂j = ŷ, ∀j = 1, ..., nz.

(11)

By construction, the above formulation is a MPLP with right-
hand side parameter ŷ ∈ Ŷ . The mapping ẑ : Ŷ → Rnz is
thus PWA and its associated critical regions of Ŷ are convex
polytopes. Now let Rκ(Ŷ) be the κth critical region of Ŷ ,
with κ = 1, ..., κ̂. Then, the κth piece of ẑ(ŷ), here denoted
by ẑκ(ŷ), can be written in affine form as

ẑκ(ŷ) = Πκŷ + πκ, ∀ŷ ∈ Rκ(Ŷ). (12)

The parameters Πκ ∈ Rnz×ny and πκ ∈ Rnz are valid for
the critical region Rκ(Ŷ) and can be readily determined for
each κ = 1, ..., κ̂ by using off-the-shelf multiparametric linear
optimization software, e.g., the Multiparametric Programming
Toolbox (MPT) [23]. Note that the values that ẑκ(ŷ) maps
from the elements of Rκ(Ŷ) lie also in a convex polytope.

2) Closed-form of the Mapping k̂(ŷ): For the κth critical
region Rκ(Ŷ) with κ = 1, ..., κ̂, we now construct the
mapping k̂κ : Rκ(Ŷ) → U based on the second-stage LP (7)
as well as on expression (12). We obtain

k̂κ(ŷ) = argmin
u′∈U

min
η∈R

η

s.t. Gu′ +Πκŷ + πκ︸ ︷︷ ︸
ẑκ(ŷ)

≤ b+ η1. (13)

The above problem formulation can be interpreted as a MPLP
with right-hand side parameter ŷ ∈ Rκ(Ŷ). This means that
the mapping k̂κ(ŷ) is PWA for ŷ ∈ Rκ(Ŷ) and the associated
critical regions of Rκ(Ŷ) are convex polytopes.
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Now let Rlκ(Ŷ) denote the lth critical region of Rκ(Ŷ),
with l = 1, ..., l̂κ. The lth piece of k̂κ(ŷ), here denoted by
k̂lκ(ŷ), has the affine form

k̂lκ(ŷ) = Wlκŷ + νlκ, ∀ŷ ∈ Rlκ(Ŷ),

where Wlκ ∈ Rnu×ny and νlκ ∈ Rnu are fixed parameters
valid for the subset Rlκ(Ŷ). As before, the parameters Wlκ,
νlκ, and the critical regions Rlκ(Ŷ) can be computed for each
l = 1, ..., l̂κ by using off-the-shelf optimization software such
like MPT. Note that the resulting control law u = k̂(ŷ) has a
total of D =

∑κ̂
κ=1 l̂κκ̂ affine pieces.

From the above derivations we conclude that the control
law implied by LPs (6)–(7) is a PWA mapping with pieces
defined on convex polytopes. As formulations (6)–(7) and (10)
are equivalent, theses properties also hold for the control law
implied by LP (10).

A well-known result in multiparametric programming is that
the total number of critical regions may grow exponentially
with the dimension of the parameter vector [13]. We hence
recommend the proposed offline computation approach only
for small-scale use cases such as the example in Section VI-A.
For larger applications, see the example in Section VI-B, the
online computation techniques are often more efficient. In
this case, however, it is not certain that the computed control
actions will imply an admissible control law. This motivates
the development of the following verification algorithm that
proves the admissibility of an online-computed PWA control
law u = k̂(ŷ) prior to its actual implementation.

IV. VERIFYING THE EXISTENCE OF ADMISSIBLE PWA
CONTROL LAWS

In this section, we address the task of verifying the admissi-
bility of the online PWA control laws introduced in Section III.
This offline verification step is crucially important to apply
such control laws in real, safety-critical power grids. The
proposed verification algorithm is derived from the online one-
stage control law implied by LP (10) as follows.

As pointed out in Section III, the control law implied by
LP (10) is admissible if the condition η⋆(ŷ) ≤ 0 is fulfilled
for all ŷ ∈ Ŷ . To verify the admissibility property of the
mapping u = k̂(ŷ), we propose to seek for the worst-case
realization of the observation ŷ ∈ Ŷ that maximizes η⋆(ŷ).
Note that this can be achieved by solving the following max-
min optimization problem derived directly from LP (10):

ηmax = max
ŷ∈Ŷ

min
η∈R,u′∈Rnu ,
ρ1,...,ρnz∈Rny ,

λ1,...,λnz∈Rld
≥0

η

s.t. constraints of LP (10).

(14)

To solve the above max-min optimization problem, we
propose to apply strong duality theory again to LP (10), which
allows us to reformulate problem (14) as a single non-convex
QCQP as we explain next.

First, note that LP (10) is always feasible for any fixed
observation ŷ ∈ Ŷ . Then, by strong duality, the dual for-
mulation of optimization problem (10) corresponds to an

always feasible linear maximization problem whose optimal
cost equals the optimal value of the feasibility indicator η. To
derive the dual maximization problem, we now introduce the
dual variables α ∈ Rnz

≤0, β1, ...,βnz ∈ Rnd , and γ ∈ Rlu
≤0,

which correspond to the first, second, and third constraint
blocks of (10), respectively. Thus, each primal variable in
LP (10) receives a dual constraint, which yields the following
set of dual (in)equality constraints:

(η) : − 1Tα = 1,

(u′) : GTα+RTγ = 0,

(ρj) : αj ŷ +Mβj = 0, ∀j = 1, ..., nz,

(λj) : αjt+Tβj ≤ 0, ∀j = 1, ..., nz.

(15)

Moreover, the dual cost to be maximized is given by

dual cost of LP (10) = bTα+

nz∑
j=1

Hjβj + rTγ, (16)

which is readily obtained from the parameters of the right-hand
side of the constraints in problem (10). The optimal dual cost
equals the optimal value of η. Using the dual constraints (15)
and the dual cost (16), the worst-case observation ŷ that
maximizes the value of η can be found by solving

ηmax = max
α∈Rnz

≤0
,

β1,...,βnz∈Rnd ,

γ∈Rlu
≤0

, ŷ∈Ŷ

bTα+

nz∑
j=1

Hjβj + rTγ

s.t. − 1Tα = 1,

GTα+RTγ = 0,

αj ŷ +Mβj = 0, ∀j = 1, ..., nz,

αjt+Tβj ≤ 0, ∀j = 1, ..., nz.

(17)

Clearly, the bilinear equality constraints involving the deci-
sion variables αj and ŷ make the feasibility set non-convex
and optimization problem (17) is a non-convex QCQP. If the
optimal cost of (17) fulfills ηmax ≤ 0, then the existence of an
admissible control law is guaranteed.

While the above non-convex QCQP has worst-case expo-
nential complexity, we found that a special implementation of
the above optimization model performs efficiently in practice.
This is discussed in the subsequent section.

V. IMPLEMENTATION OF THE VERIFICATION ALGORITHM

We could establish experimentally that the efficiency of
solving QCQP (17) can be significantly improved by ex-
ploiting the characteristics of Gurobi 9.1.1 [24], the non-
convex QCQP solver of our choice. The simple, but key
step consists of isolating the bilinear terms from the linear
conditions by introducing new auxiliary decision variables
ψ1, ...,ψnz ∈ Rny which are restricted as

ψj = αj ŷ, j = 1, ..., nz. (18)

This allows us to partition the constraints of QCQP (17) into
a block of pure linear constraints, and the set of bilinear
constraints (18) which are handled systematically in Gurobi by
employing McCormick envelopes [25] and a spatial branching
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strategy [26]. By recalling that ŷ = Md, the QCQP (17) is
thus equivalent to

ηmax = max
α∈Rnz

≤0
, γ∈Rlu

≤0
,

d,β1,...,βnz∈Rnd ,
ŷ,ψ1,...,ψnz∈Rny

bTα+

nz∑
j=1

Hjβj + rTγ

s.t. − 1Tα = 1,

GTα+RTγ = 0,

αjt+Tβj ≤ 0, ∀j = 1, ..., nz,

Td ≤ t,
ŷ = Md,

ψj +Mβj = 0, ∀j = 1, ..., nz,

ψj = αj ŷ, ∀j = 1, ..., nz.

(19)

We validate experimentally that providing the explicit parti-
tioning of the constraints to the solver reduces the solver time
by 1-2 orders of magnitude, making the QCQP (19) efficient
for practical use cases. We also remark that in many cases
it is not necessary to solve QCQP (19) to global optimality.
This is because an upper bound for the optimal cost fulfilling
ηup ≤ 0 is sufficient to prove the existence of an admissible
PWA control law, and a lower bound satisfying ηlb > 0 is
sufficient to show that an admissible control law does not exist.

Note that, once the admissibility guarantee is obtained, an
admissible PWA control law can be found via, e.g., the online
two-stage algorithm presented in Section III-A. Moreover,
instead of minimizing the feasibility indicator η, one could also
minimize different objectives like linear or convex quadratic
cost functions. This allows grid operators to choose control
actions that are cost-optimal or favor certain kinds of actions,
like changing reactive power set points, over others, like
approximated transformer switching operations. An overview
of the proposed toolchain is depicted in Fig. 3.

QCQP (19) cannot only be used to verify the existence of
PWA control laws, but also to obtain insights about critical
power grid states. For instance, the non-zero entries of α indi-
cate which system constraints are active when η is maximum.
Moreover, the optimal value of d produces the worst-case
observation ŷ that maximizes η. This information is useful
for determining appropriate measures in grid operation and/or
grid planning to alleviate potential system limitations. This is
demonstrated with the following application examples.

VI. APPLICATION TO VOLTAGE REGULATION IN ACTIVE
DISTRIBUTION GRIDS

This section demonstrates the theoretical results and pro-
posed algorithms for the computation and verification of
admissible PWA control laws in power system applications. In
particular, this section shows how to design robust voltage/VAr
control (VVC) policies that use only a few actuators and
sensors, but keep the voltage magnitudes within the desired
operating region independently of the non-controlled, poorly
observed power injections.

Starting with a simple distribution feeder, we demonstrate
a realistic situation where the VVC control problem cannot
be solved by any affine control law, but an admissible PWA

Define linear, steady
state power flow model

Define (u,d,y,U ,D);
Derive system (2)–(4)

no

yes

Verify the existence of
admissible PWA control

laws via QCQP (19)

Compute admissible
PWA control law

Options:

– Offline explicit closed-form (Section III-C)

– Online two-stage LP (6)–(7)
– Online one-stage LP (10)

ηmax ≤ 0?

(e.g. linearized Disflow)

Fig. 3. Proposed toolchain for computing admissible PWA control laws for
constrained linear power flow systems.

control law exists. We also study a modified version of the
IEEE 123 bus test case [27] to corroborate the efficiency of
the proposed algorithms to larger, realistic use cases.

In both cases, we first adopt a lossless, linearized version
of the DistFlow equations [19], [20] to model the voltage
magnitudes in the grid. This modeling is in line with the
constrained linear system assumption of this paper and is used
compute all control laws. The performance of the obtained
control laws is then evaluated empirically both within the
assumed linear model and also when the non-linear AC power
flow equations are used for system simulation. As no closed-
form theoretical analysis is possible for ACPF, samples of the
uncertain power injections are used.

The simulation experiments are implemented in Matlab
2018b, using YALMIP [28] as modeling language, Gurobi
9.1.1 as LP and QCQP solver, and MPT [23] as MPLP solver.
ACPF simulations are performed using a standard Newton-
Raphson approach [29] implemented in Matpower [30]. The
simulations are conducted on an i5-10210U notebook with
a base frequency of 1.6 GHz, and 8 GB of RAM. If not
mentioned otherwise, the optimization problems are solved to
an accuracy of 1× 10−6.

A. Simple Distribution Feeder

Fig. 4 shows the single-line diagram of a simple distribution
feeder with a substation transformer and two PQ buses. Each
transmission line is parametrized by a series impedance of
0.027+ j0.03 pu. The voltage magnitude at the secondary side
of the substation transformer is fixed at v0 = 1.01 pu. Further,
a pure active load as well as a small PV unit are connected
to bus 1. This PV unit produces power with a power factor of
one, i.e., q1 = 0 pu. Another PV unit is connected to bus 2
and has a maximum apparent power capacity of smax

2 = 1 pu.
The goal of the grid operator is to find an admissible control

law that keeps the voltage magnitudes v1 and v2 within the
interval [0.95, 1.05] pu independently of the generation/load
situation. To this end, the grid operator measures the voltage
magnitude v2 to adjust the reactive power q2, see Fig. 4.

The reactive power q2 has to be chosen such that the
maximum apparent power capacity of the PV unit is not
exceeded. In other words, for a fixed value of generated active
power p2, the condition

√
p22 + q22 ≤ smax

2 must hold. This
non-linear constraint can be approximated with the help of
4 linear inequalities as shown in Fig. 4. Additionally, the
maximum active power p2 is limited to 90% of the maximum
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apparent power capacity smax
2 in order to still be able to support

voltage regulation during peak load situations.
1) Derivation of the Constrained Linear System: In order to

design an admissible control law with the framework proposed
in this paper, we first define the quantities

u = q2, y = v2, d =
[
p1 p2

]T
.

As in Example 1, we adopt a linearized version DistFlow
equations that neglects the line losses to derive the parameter
values of the constrained static linear system (2)–(4). The
voltage magnitude v2 can then be expressed as

v2 = v0 + 0.06︸︷︷︸
N

u+
[
0.027 0.054

]︸ ︷︷ ︸
M

d.

Moreover, the linearized operational constraints of the power
grid can be expressed as

0.030
0.060

−0.030
−0.060
0.383
0.924

−0.383
−0.924


︸ ︷︷ ︸

G

u+



0.027 0.027
0.027 0.054

−0.027 −0.027
−0.027 −0.054

0 0.924
0 0.383
0 0.924
0 0.383


︸ ︷︷ ︸

H

d ≤



0.040
0.040
0.060
0.060
0.924
0.924
0.924
0.924


︸ ︷︷ ︸

b

,

where the first four inequalities are related to the operational
limits for the voltage magnitudes v1 and v2, and the last
four inequalities correspond to the linear approximation of the
operational constraint

√
p22 + q22 ≤ smax

2 .
Following the control scheme depicted in Fig. 2, we are

interested in finding an admissible control law k̂ : U → Ŷ
that uses the observation ŷ = Md associated to the voltage
magnitude v2. Note that the sets U , D, and Ŷ can directly be
obtained from the system specifications shown in Fig. 4, i.e.,

U = [−1, 1] pu,
D = [−2.87, 0.17] pu × [0, 0.9] pu,

Ŷ = [−0.078, 0.053] pu.

From the above set representations, the numerical values of the
parameters (R, r,T, t) are readily derived. In the following,
the existence of admissible control laws for the constrained
distribution feeder is studied.

2) Affine Control Law: The existence of an admissible
affine control law u = K̂ŷ + ŵ, with parameters K̂, ŵ ∈ R,
can be verified efficiently by solving the LP proposed in [8].
The best affine control law reads

u = −5.9734ŷ + 0.0726 (20)

and is depicted in Fig. 5. However, the optimal solution of
the LP yields ηmax = 0.014 > 0, meaning that the distribution
grid does not admit any affine control law with the available
actuators and sensors. Voltage constraint violations are thus to
be expected when applying the affine control law (20) to the
linearized distribution grid, see Fig. 5. The solution of the LP
proposed in [8] is obtained in 2.4 ms.

pPV,1 ∈ [0, 0.17] pu

pL,1 ∈ [−2.87, 0] pu

0
q2v2

1 2

Grid operator

s2 ≤ 1 pu

q2

p2

1 pu0

Fig. 4. A simple active distribution feeder subject to uncertain consumption
and PV generation. The operational limits for the load and the PV unit con-
nected to bus 1 are given as intervals. The red and green boxes represent the
control action and measured quantity, respectively. The non-linear operational
constraint for the PV unit at bus 2 is approximated with 4 linear inequalities,
and the red line indicates the maximum allowed active power output p2 that
ensures sufficient reactive power capabilities during peak output.

3) PWA Control Law: We now verify the existence of
an admissible PWA control law by solving QCQP (19). The
optimal solution of the QCQP yields ηmax = −0.0011 ≤ 0, i.e.,
the existence of an admissible PWA control law u = k̂(ŷ) is
guaranteed. With the software and hardware specified in above,
the value of ηmax is obtained in 11.4 ms. This admissibility
guarantee ensures that the voltage magnitudes are always
feasible when applying online computed control actions via
LPs (6)–(7) to the linearized distribution grid. In contrast, no
such theoretical guarantee is available for the corresponding
non-linear ACPF system.

The admissibility guarantee is now exploited to design an
admissible PWA control law that maximizes the reactive power
q2 instead of minimizing the feasibility indicator η. This
objective is chosen in order to keep the voltage magnitudes
as high as possible and consequently to reduce the line losses.
The proposed PWA control law is thus defined by the two-
stage linear optimization problem

u = k̂opt(ŷ) = argmax
u′∈R

u′

s.t. Gu′ + ẑ(ŷ) ≤ b,
Ru′ ≤ r,

(21)

where ẑ(ŷ) is defined by LP (6). Note that an equivalent one-
stage LP formulation for the control law u = k̂opt(ŷ) is also
derivable from LP (10) here.

Now the two-stage multiparametric linear optimization tech-
nique proposed in Section III-C is applied to compute the ex-
plicit closed-form expression of the PWA control law implied
by LPs (6)–(21). The resulting closed-form expression has a
total of 4 pieces, namely

u =


−7.671ŷ + 0.406, ŷ ∈ [−0.078,−0.039)

−44.708ŷ − 1.05, ŷ ∈ [−0.039,−0.029)

0.241, ŷ ∈ [−0.029, 0.026)

−16.667ŷ + 0.667, ŷ ∈ [0.026, 0.053]

. (22)

With the above software and hardware specifications, the
explicit representation (22) is obtained in ca. 43 ms. Since the
explicit closed-form expression of the proposed PWA control
law is now available, the process of choosing the reactive
power q2 based on the voltage magnitude v2 can be simplified
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Fig. 5. Performance of the affine control law (20) and the PWA control law (6)–(21) or (22) for the test grid from Fig. 4. The top row shows the two
control laws as a function of the observation ŷ, a transformed version of the measured voltage v2. The lower two rows show the resulting voltage magnitudes
v1 and v2. These should always remain between 0.95 pu and 1.05 pu. A linearized grid model is used to design the control laws in all cases, but for the
experimental control evaluation here, we use both the linear model (LPF) and the underlying non-linear AC grid model (ACPF). The best affine control law
for this example is not admissible, since the (unobserved) voltage magnitude v1 is not guaranteed to be above 0.95 pu for realizations of the exogenous
variables. In comparison, the computed general PWA control law keeps all voltage magnitudes valid under all circumstances.

from solving LPs (6)–(21) to evaluating (22). The proposed
PWA control law is depicted in Fig. 5.

4) Empirical ACPF Performance Assessment: The obtained
control laws, affine and PWA, are now applied to both the
linearized power flow (LPF) and the ACPF equations to
evaluate their performance in terms of state feasibility. To this
end, a total of 625 realizations of (p1, p2) are generated on
a 25 × 25 lattice that uniformly covers the set of exogenous
actions D. When applying the obtained control laws to the
ACPF system, there may occur values of ŷ that do not belong
to the set Ŷ—which is constructed based on the assumed
linear representation of the power grid. For those values of
ŷ, we propose to choose the control action u associated to
the nearest point in Ŷ .

The resulting voltages magnitudes v1 and v2 for both affine
and PWA control laws are plotted in Fig. 5. Note that the
lower operational limit for the unobserved voltage magnitude
v1 is violated for many high load situations when the affine
control law (20) is applied to both the LPF and ACPF models.
In contrast, the designed PWA control law keeps the voltage
magnitudes feasible even for the ACPF system in this case.
Further, the resulting range of voltage magnitudes is larger
for the ACPF system compared to the LPF, particularly in
high load situations (i.e., for low values of ŷ in Fig. 5).

In such situations, the line losses affect the validity of the
lossless linearized Distflow equations significantly. This is
because such linear power flow approximation in general
underestimates the true line flows and overestimates the true
voltage magnitudes across the distribution grid [18].

Also note in Fig. 5 that, as the value of q2 is maximized,
the voltage magnitudes obtained via the PWA control law are
generally higher than the ones obtained for the affine control
law. This is due to the added functional flexibility of the PWA
approach as compared to the more restrictive affine setting.

Table I presents the obtained average solver times for
computing the control action u via the admissible PWA control
law u = k̂opt(ŷ), for both online and offline approaches. While
the online, one-stage approach is twice faster than its two-stage
counterpart here, the explicit PWA control law outperforms
both online approaches by 3 orders of magnitude.

TABLE I
SOLVER TIMES AVERAGED OVER 625 REALIZATIONS OF d ∈ D

Task for a given ŷ Solver time
Evaluate ẑ(ŷ) via first-stage LP (6) 1.9 ms
Compute optimal u via second-stage LP (21) 1.8 ms
Compute optimal u via one-stage LP derived from (10) 2.1 ms
Compute optimal u via explicit PWA mapping (22) 4.8 µs
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B. Modified IEEE 123 Distribution Feeder

We now apply the proposed framework to a larger grid,
namely a modified version of the IEEE 123 bus test case [27]
as shown in Fig. 6. The power grid is assumed to be balanced,
allowing us to perform single-line analysis. The system has
a total of 86 PQ loads. The grid operator assumes that the
ith load consumes active and reactive power in the ranges
[−ppeak

i , 0] pu and [−qpeak
i , 0] pu, respectively. The peak load

at each bus is calculated as the sum of the nodal spot load
values specified in [27]. The system has a total peak load of
stotal

load = 14.36 + j7.84 pu.
We add a total of 36 PV units as shown in Fig. 6. The

active power injected by each PV unit is unknown to the grid
operator but is limited by a maximum apparent power capacity
of smax

PV = 0.344 pu. While some PV units generate power with
a power factor of 1, other PV units can inject reactive power
to the grid, while being subject to the non-linear operational
constraint

√
p2i + q2i ≤ smax

PV . Similar to the use case studied
in Section VI-A, each non-linear constraint is approximated
with the help of 4 linear inequalities.

The goal of the grid operator is to keep all voltage mag-
nitudes within the voltage band of 1 ± 0.05 pu. To this
end, the grid operator communicates with the PV units at
buses {74, 105} to measure voltage magnitudes and adapt
reactive power injections. Additionally, the grid operator can
manipulate the voltage magnitude at buses {0, 8, 23, 71} via
on-load tap changers with ±5 tap positions and a voltage
resolution of 0.01 pu.

In line with the ideas of this paper and the above power grid
specifications, we now define u =

[
q74 q105 v0 v8 v23 v71

]T
,

y =
[
v74 v105

]T
, and the exogenous action d ∈ D ⊂ R244.

Notice that a continuous control action space U ⊂ R6 is
assumed here. The matrices G ∈ R254×6, H ∈ R254×244,
N ∈ R2×6, and M ∈ R2×244 are derived from the lossless,
linearized DistFlow equations as in Example 1.

For this setting, the best affine control law u = K̂ŷ + ŵ
is computed by solving the LP proposed in [8]. The LP is
solved in ca. 1.68 s and yields ηmax = 0.0037 > 0, i.e., an
admissible affine control law does not exist. Subsequently, the
existence of an admissible PWA control law is verified by
solving QCQP (19). The solution of the proposed QCQP yields
ηmax = −7.73×10−4 ≤ 0, which confirms the existence of an
admissible PWA control law. The QCQP is solved to global
optimality in 16.65 s. Remarkably, an upper solution bound
below 0 is obtained already after 3 s.

1) Empirical ACPF Performance Assessment: The perfor-
mance of the online PWA control law implied by LPs (6)–(7) is
now evaluated empirically when applied to the ACPF system.5

To this end, ACPF simulations are initially performed for three
special situations, namely

• the Peak-Load-no-Generation (PLnG) situation,
• the Peak-Generation-no-Load (PGnL) situation, and
• the combined generation-consumption Worst-Case (WC)

situation yielded by the optimal solution of QCQP (19).

5The closed-form representation of the PWA control law is not determined
for this use case due to the enormous computational effort required to find
the multiparametric solution of problem (11).
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Fig. 6. Modified version of the IEEE 123 bus test case. The black circles
correspond to load nodes and the substation transformer is located at node
0. The red circles indicate the location of voltage regulators. Those PV units
that generate with power factor 1 are highlighted in yellow, and those having
reactive power control and communication capabilities are colored in cyan.
If the peak power capacity of all PV is increased by 5%, then possible
overvoltages could be alleviated by additionally controlling the reactive power
of the PV units connected to nodes {99,116,119}.

ACPF simulations are additionally executed for 2000 random
realizations of the uncertain power injections sampled uni-
formly from the set D.

When applying the PWA control law implied by LPs (6)–
(7) to the ACPF system, there are two issues requiring special
consideration. On the one hand, the mismatch between the LPF
and ACPF models implies there could be observations for the
ACPF system that lie outside the set Ŷ (which is constructed
based on the assumed linear representation of the power grid).
To overcome this, the authors propose to project such obser-
vations to the nearest point in Ŷ . On the other hand, the con-
trollable voltage magnitudes are manipulated via on-load tap
changers here, which involves taking discrete control actions.
We propose two variants for addressing the latter challenge.
First, each voltage magnitude yielded by the PWA control law
is rounded to the nearest point in the set of available voltage
positions defined by V = {0.95, 0.96, . . . , 1.04, 1.05}. This
“LP+Round” variant is compared against the more complex
control law that results when computing the discrete voltage
magnitudes directly by solving the following Mixed-Integer
Linear Program (MILP) online:

u = k̃(ŷ) = argmin
u′∈R2×V4

min
η∈R

η

s.t. Gu′ + ẑ(ŷ) ≤ b+ η1,

− smax
PV ≤ u′

i ≤ smax
PV , ∀i ∈ {1, 2},

(23)

where ẑ(ŷ) is defined by LP (6).6 In the following, MILP (23)
is solved using a relative gap tolerance of 1× 10−4.

The results of the empirical ACPF study for both control
variants are shown in Fig. 7. No voltage constraint violations

6It is assumed that the proposed “LP+Round” approach as well as the
non-linear control law implied by LP (6) and MILP (23) are admissible in
the sense of Definition 1. The derivation of an algorithm for verifying the
existence of admissible control laws subject to mixed-integer control action
spaces is left for future research.
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(a) Peak-load-no-generation situation (PLnG)

(b) Peak-generation-no-load situation (PGnL)

(c) Worst-Case situation (WC)

Fig. 7. Voltage magnitude profiles for the grid shown in Fig. 6. Three
different critical situations are examined for different control variants and
evaluation models. Remarkably, the most critical situation, i.e., with the
voltage closest to the limits, is not obtained for the classically examined
situations (Peak-Load-no-Generation and Peak-Generation-no-Load) but for a
situation that combines power generation and consumption. It can be obtained
via the proposed admissibility verification scheme (19).

occur over the 2003 tested realizations of the uncertain power
injections. Moreover, the voltage profiles for the WC, PLnG,
and PGnL situations are similar for the two compared control
variants. While for the PLnG situation the voltage profiles
differ slightly, for the WC and the PGnL situations the profiles
are practically identical.

As indicated in Table II, the proposed online two-stage
control variants have similar computational performance. In
contrast, an alternative “LP+Round” variant based on the on-
line one-stage LP (10) would almost double the computational
effort due to the large number of auxiliary decision variables
and constraints involved.

TABLE II
SOLVER TIMES AVERAGED OVER 2003 REALIZATIONS OF d ∈ D

Task for a given ŷ Solver time
Evaluate ẑ(ŷ) via first-stage LP (6) 0.66 s
Compute u via second-stage LP (7) + Round 2.14 ms
Compute u via second-stage MILP (23) 5.83 ms
Compute u via one-stage LP (10) + Round 1.25 s

2) Effect of Increasing the Share of Solar PV: We now
increase the maximum capacity of all PV units by 5% and
check whether an admissible PWA control law for this new
setting exists. The optimal solution of QCQP (19) yields
ηmax = 4.37 × 10−4 > 0, meaning that the system does not
admit any PWA control law. The QCQP is solved to global
optimality in 4.76 s. The optimal value of α ∈ R254

≤0 indicates
that there is an overvoltage at bus 123. The overvoltage is
caused by a joint peak PV generation, as can be read from
the optimal value of d. This worst-case situation cannot be
avoided by any control action. Additional controllable assets
in the distribution grid are hence required.

We propose to additionally control the reactive power inject-
ed by the PV units at nodes {116, 119, 99}, as those PV units
are the nearest to the bus presenting overvoltage. In the new
setting, the optimal cost of QCQP (19) is ηmax = −0.001 ≤ 0,
corroborating the effectiveness of the proposed measure. The
QCQP is solved to global optimality in ca. 5 min, and an upper
bound below zero for the optimal value of ηmax is obtained
already after 11 s. The proposed QCQP formulation is thus a
powerful verification tool that can be implemented efficiently
by using off-the-shelf optimization software. It allows grid
operators to apply robust control algorithms with theoretical
guarantees to safety-critical power flow control problems.

The proposed verification algorithm can also be exploited to
find the minimum number of actuators and sensors required for
the existence of an admissible PWA control law, e.g., by using
hill climbing optimization as introduced previously in [8] for
the case of affine control laws. In addition, the values of α and
d obtained from the optimal solution of QCQP (19) provide
valuable information about which operational constraints are
critical and which realization of the exogenous actions leads
(or may lead) to a (potential) constraint violation. This kind
of analysis is paramount in current and future grid operation
and grid planning activities over all grid voltage levels.

VII. CONCLUSION & OUTLOOK

This paper presents a novel model-based framework for
the design of general admissible control laws for constrained
linear power flow systems at steady state. Admissible control
laws use imperfect system observations to determine suitable
control actions that robustly guarantee a feasible power grid
state independently of the influence of bounded exogenous
actions. They additionally do not require a grid state estimation
stage for computing the control action.

Supported by simulation experiments, this paper shows that
there are realistic use cases in which affine control laws as
proposed in [8] are not satisfying and more general control
strategies are required. We establish that if there exists an
admissible control policy for the constrained linear power flow
system, then it can always be chosen as a piecewise-affine
mapping with pieces defined on convex polytopes. Admissible
PWA control laws can be computed online or offline depending
on the specific problem instance as well as on the available
software and hardware equipment. In particular, the online
PWA control law implied by LPs (6)–(7) performs efficiently
for the use cases considered in this paper.
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The existence of admissible control laws for the constrained
linear power flow system can be verified offline and with
very reasonable computational efforts by solving QCQP (19).
This enables the implementation of the proposed online PWA
power flow controllers in safety-critical environments with
theoretical guarantees already in the planning stage. Moreover,
the offline verification step allows to design admissible PWA
control laws that optimize techno-economic objectives. In case
the power grid does not admit any PWA control law, the
proposed QCQP also yields a realization of the exogenous
action (e.g., uncertain power in-feeds) for which a feasible
grid state cannot be guaranteed with the available actuators
and sensors. This information is beneficial for grid operators
in the planning stage, since it can support them when deciding
if the installation of additional actuator and/or sensor devices
is more adequate to alleviate grid contingency situations in
comparison to traditional grid expansion measures.

Future work may apply the proposed approaches to other
use cases that can be formulated using the abstract math-
ematical framework of constrained linear systems at steady
state. Another line of research would be to make the explicit
representation of the control law more compact, to avoid
online optimization in the control loop. To this end, one
could trade-off the number of pieces of the closed-form
representation against a slightly larger feasibility indicator η,
while still ensuring feasible grid states.
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