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ABSTRACT 

The rising penetration of distributed renewable energy 

sources (RES), electric vehicle (EV) home-chargers, and 

heat pumps in power distribution systems can lead to 

violations of the grid operating conditions. To design 

suitable grid expansion measures for this challenge, grid 

planners need a good understanding of the existing 

infrastructure. Trustworthy, readily usable grid models 

are, however, often not available. This holds especially for 

distribution grids at the low-voltage level. In this work, a 

framework is proposed to generate a probability 

distribution over an ensemble of different, possible grid 

topologies for a given area of interest. This probabilistic 

approach allows to explicitly account for the uncertainty 

implied by the scarcity of the available information. In a 

case study with EV home-chargers, it is demonstrated how 

the proposed ensemble-based framework leads to a robust, 

uncertainty-aware interpretation regarding the 

assessment of the existing distribution grid. 

INTRODUCTION 

Power distribution systems are currently undergoing a 
substantial transformation due to the rising penetration of 
distributed RES, EV home-chargers, and heat pumps. The 
integration of these solutions can often affect the stability 
of the grid, since the increased and now potentially 
bidirectional power flow can lead to feeder congestions, 
i.e., excessive voltage drops and rises, or the overload of 
grid equipment. To design mitigation measures for these 
challenges, grid planners need a digital representation of 
the existing infrastructure.  
Trustworthy and readily usable grid models are, however, 
often not available. Several distribution grids were 
designed and built decades ago, so grid models sometimes 
no longer exist. Sometimes grid models are available on 
paper, but not readily usable in a digitized fashion. 
Sometimes grid models exist even digitally but are not 
reliable since they were not continuously updated after the 
numerous grid modifications that took place over the 
years.  
Grid planners thus must often reconstruct appropriate 
models of the existing grids, relying on scarce information. 

This holds especially for the distribution grids at the low-
voltage level. Knowledge about the distribution 
substations and the end-consumers can be assumed from 
asset management and billing systems, but the grid 
topology is often less certain. Moreover, distribution lines 
are typically located underground, making available prior 
knowledge difficult and expensive to verify [1]. 
Existing approaches mostly focus on deriving a single best 
estimate of the connecting topology based on the available 
information and the typical characteristics of distribution 
grids. In [2], the authors propose an approach for the 
automated creation of a distribution grid model based 
solely on publicly available GIS and statistical data. 
Similarly, in [3] algorithms are proposed to build a single, 
best estimate of the topology of large-scale distribution 
systems at the medium- and low-voltage level using the 
available information (e.g., consumers, information of the 
street maps, etc.) and assumed characteristics of a 
distribution grid. Both approaches, however, do not 
consider the scarcity of available information nor the 
resulting uncertainty about the assumed characteristics. 
The best estimate of the grid topology might well be 
wrong, and with it all design decisions based on it. Current 
efforts to overcome these challenges often only represent 
a partial solution to the underlying problem. For example, 
in [4] a crowdsourcing approach is proposed to collect the 
required information to infer a distribution grid, but 
information about the power distribution lines is often 
unobtainable considering that they are mainly located 
underground. In [1,5,6], the authors propose to rely on 
voltage fingerprints derived from advanced meter 
infrastructures (AMIs) to overcome the scarcity of 
information. While AMI represents a reliable source of 
information, the infrastructure is not installed everywhere 
yet. Moreover, AMI measurements are often subject to 
privacy restrictions. In [7,8,9] the authors propose 
probabilistic models to produce networks with scalable 
size and random topologies. The quality of the generated 
power grids is estimated according to how well their 
topological and electrical features reflect those of 
standardized test feeders. The main objective of these 
works is, however, to create numerous test feeders for 
further research and analysis, rather than utilizing the 
samples to produce an uncertainty-aware estimate of a 
specific true grid topology.   Furthermore, they do not take 
specific location information into account to produce the 
random topologies.
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Fig. 1: Schematic of the proposed framework and its application. (a) and (b) depict the two main modules of the approach, i.e., generation 

of the operational grid topologies for a region of interest and rating the probability of the produced samples. (c) and (d) show the 

additional information required for the application of the ensemble to analyze the overload of the distribution substations along with the 

outcome of the analysis, i.e., the substations that likely require reinforcement.

This work proposes to use the available information about 
a specific distribution grid to generate an ensemble of 
different, possible grid topologies that appropriately 
represents the uncertainty in the estimation procedure.  To 
this end, a randomized neighbourhood-growth model is 
used to assign end-consumers to distribution substations 
and a minimum spanning tree to derive the connecting 
topology from the resulting assignment. The probability of 
each sample is rated according to the estimated grid 
investment costs as well as domain knowledge about key 
characteristics of the grid. The presented framework can 
be applied to conduct uncertainty-aware follow-up grid 
analyses. For a distribution grid with an increased roll-out 
of EV home-chargers, this work demonstrates that relying 
on a single best estimate of the grid topology can mislead 
grid planners regarding its feasibility, whereas the 
proposed framework leads to a more robust interpretation. 
The approach can thus help designing robust mitigation 
measures for the rising penetration of EV home-chargers 
when only imperfect grid knowledge is available. The 
framework along with its application are graphically 
described in Fig. 1. 
The remainder of the paper is structured as follows. In 
Section II, the proposed approach for generating grid 
topologies and representing their uncertainty is introduced. 
In Section III, a case study for its application is presented. 
Section IV concludes the work with a summary and 
outlook on avenues for future work. 

FRAMEWORK FOR GRID TOPOLOGY 

ENSEMBLE GENERATION 

The ensemble-based framework consists of three parts. 

First, a randomized neighbourhood-growth model assigns 
the end-consumers to the available distribution 
substations. Then, a grid topology using a minimum 
spanning tree is derived. Finally, the grid topology 
generation procedure is repeated, and the probability of the 
resulting samples is rated. A flowchart describing the 
workflow of the proposed framework is depicted in Fig. 2. 

 
Fig. 2: Flowchart describing the workflow of the proposed 

approach.  
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Fig. 3: Base graph 𝒢𝑏𝑎𝑠𝑒 for a region in Schutterwald, Germany, 

including the available distribution substations (orange circles), 

the end-consumers (red circles) and the street layout (black). 

Problem settings 

This work considers the problem of modelling regionally 
resolved operational grid topologies [10]. The operational 
                                         ’     -branch 
model) describes how the grid equipment is connected 
considering the current switch status and the existence of 
temporary elements [11]. In the following, operational grid 
topology is referred simply as grid topology. 
Conceptually, the grid topology is represented as a graph 
𝒢 = (𝒱, ℰ) where 𝒱 is the set of nodes (i.e., distribution 
substations, end-consumers, and nodes interconnecting the 
electrical lines) and ℰ is the set of edges (i.e., electrical 
lines). Let 𝒢base = (𝒱base, ℰbase) be the street layout of the 
considered region, see, e.g., Fig. 3. ℰ is assumed to follow 
the street layout, as is often the case in residential, urban 
areas, i.e., 𝒱 ⊆ 𝒱𝑏𝑎𝑠𝑒 and ℰ ⊆ ℰbase [3]. Given 𝐾 
distribution substations 𝒢 is the union of 𝐾 disjoint sub-

grids, where each sub-grid 𝒯𝑘 = (𝒱𝒯𝑘
, ℰ𝒯𝑘

) is a tree (i.e., an 

acyclic, connected graph) with a distribution substation 
𝑠𝑘 ∈ 𝒱, 𝑘 ∈ {1, … , 𝐾} at the root. 

Randomized neighbourhood-growth model 

A randomized neighbourhood-growth model is used to 
assign end-consumers to the available distribution 
substations. 
Let 𝒱base be subdivided into a set of already assigned 
nodes ℒ and a set of so far unassigned nodes 𝒰. Initially, 
ℒ consists of the substations 𝑠𝑘, 𝑘 ∈ {1, … , 𝐾}, only. In 
each of the following iterations, a node from 𝒰, 
neighbouring the current ℒ, is assigned to one substation, 
until no nodes are left in 𝒰.  
Let the tuple (𝑎𝑣)𝑣∈𝑉 encode the current assignments, i.e.,  
𝑎𝑣 ∈ {1, … , 𝐾} if  𝑣 ∈ ℒ and 𝑎𝑣 = 0 if 𝑣 ∈ 𝒰. For a node 
𝑣 ∈ 𝒰 the weight 𝑤𝑣

𝑘, 𝑘 ∈ {1, … , 𝐾} is defined as 

𝑤𝑣
𝑘 = ∑ 1

𝑑(𝑣, 𝑢)⁄
{𝑢∈𝒩(𝑣)|𝑎𝑢=𝑘}

 

where 𝒩(𝑣) are the neighbouring nodes of 𝑣 in 𝒢𝑏𝑎𝑠𝑒  and 
𝑑(𝑣, 𝑢) the physical distance between node 𝑣 and 𝑢 along 
edges in 𝒢base. 𝑣 is assigned to the substation 𝑠𝑘 with the 
largest weight 𝑤𝑣

𝑘.  
Utilizing this mechanism, that is adapted from [12], often 
results in only one non-zero weight, i.e., when 𝑣 has only 
one labelled neighbour in ℒ. However, if several 
neighbours are already labelled, the closer label is 
preferred. 
To generate diverse possible node assignments, a 
stochastic element is added into the growth model. 
Specifically, the next node 𝑣 ∈ 𝒰 to assign to a substation 
is selected by randomly sampling from a pool of 
candidates. The candidates comprise the current 
unlabelled nodes with at least one neighbour already 
assigned to a substation. 

Deriving the grid topology 

Given a node assignment (𝑎𝑣)𝑣∈𝑉, the final grid topology 
𝒢 using minimum spanning trees is derived. 

Let 𝒢base,𝑘 = (𝒱𝑏𝑎𝑠𝑒,𝑘 , ℰ𝑏𝑎𝑠𝑒,𝑘) be a disjoint sub-graph of 

𝒢base defined by 𝑉𝑏𝑎𝑠𝑒,𝑘 = {𝑣 ∈ 𝒱base|𝑎𝑣 = 𝑘} and 
ℰ𝑏𝑎𝑠𝑒,𝑘 = {(𝑣, 𝑢) ∈ ℰ𝑏𝑎𝑠𝑒|𝑣 ∈ 𝒱𝑏𝑎𝑠𝑒,𝑘 ∧ 𝑢 ∈ 𝒱𝑏𝑎𝑠𝑒,𝑘}. To 
derive the desired sub-grid 𝒯𝑘, a minimum spanning tree 
on 𝒢base,𝑘 is calculated and all edges not leading to a 
terminal, i.e., a substation or an end-consumer node, are 
removed. 

Rating the probability of the grid topologies 

The grid topology generation procedure described above is 
repeated 𝑁 times to generate an ensemble of 𝑁 possible 
grid topologies. 
The probability 𝑝𝑖  of a generated grid topology 𝒢𝑖, 𝑖 ∈
{1, … , 𝑁}, is assumed to depend on the     ’  investment 
costs, that in turn are assumed proportional to the 
                             ’                   𝑙𝒢𝑖

. 

Specifically, 𝑝𝑖  is calculated as 

𝑝𝑖 =
𝑒−𝜆𝑙𝒢𝑖

∑ 𝑒
−𝜆𝑙𝒢𝑗𝑁

𝑗=1

 

where 𝜆 represents the sensitivity of  𝑝𝑖  on  𝑙𝒢𝑖
 and encodes 

domain knowledge. The latter is defined via user-defined 
parameters 𝑧 and 𝑞 as 

𝜆 = −
1

𝑧
ln (

1

1 − 𝑞
), 

where 𝑧 represents an increase in the length of the lines 
(e.g., 10%) and 𝑞 the corresponding reduction in 
probability (e.g., 50%). 

CASE STUDY: OVERLOAD ANALYSIS OF 

DISTRIBUTION SUBSTATIONS 

The following case study demonstrates that relying on a 
single, best estimate of the grid topology (e.g., the most 
likely grid topology in the ensemble) can mislead grid 
planners regarding the feasibility of a distribution grid, 
whereas the proposed ensemble-based framework leads to 
a more robust interpretation. To this end, a low-voltage 
distribution grid subject to 5% penetration of level-2 EV 
home-chargers is examined.  
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Figure 4: (Left column) Three exemplary grid topologies and their probability rating for four substations in the region considered in the 

case study.  (Middle column) Hourly analysis of the load probability over a one-day period for the four substations. (Right column) 

Comparison of the load of the most likely grid topology with the load probability distribution over the ensemble for the four substations 

at an hour of peak load (i.e., 20:00). 

Settings 

A region located in Schutterwald, Germany, is considered 
with 15 distribution substations of capacity 630 kVA and 
in total 1751 households. The location of the distribution 
substations is obtained from [13], the households are 
extracted from the open-source geographic database 
OpenStreetMap [14].  
Load profiles with hourly resolution 𝑃ℎ

𝑑(𝑡), 𝑡 ∈ {1, … ,24} 
over a one-day period are derived for all households ℎ ∈
{1, … , 𝐻} as follows. Existing load profiles obtained from 
[15] are randomly selected, averaged for a certain hour of 
the day 𝑡, and normalized w.r.t. to the total energy 
consumption. The resulting time-series for household ℎ is 
then scaled with a daily energy consumption factor, that is 
proportional to the area of the household’  shape extracted 
from OpenStreetMap.  
Level-2 EV home-chargers are added to 5% randomly 
selected households. For a charger in household ℎ a year-
long charging profile from [16] is selected at random and 
the charging probability for each hour of the day 𝑡 is 
derived from it. Then, 11 kW are added to 𝑃ℎ

𝑑(𝑡) according 
to the determined charging probability. 

Application 

The ensemble of grid topologies generated is used to 
investigate overloads of the distribution substations in the 
modelled region. The overload of a distribution substation 
𝑠𝑘 is assumed to occur when 𝑠𝑘 operates at or above 120% 
of its nameplate capacity 𝑃𝑠𝑘,np  for at least one hour. For a 

substation 𝑠𝑘, the overload probability 𝑝𝑠𝑘,overload is 

calculated over the ensemble of 𝑁 grid topologies as 

𝑝𝑠𝑘,overload = ∑ 𝑝𝑖

𝑁

𝑖=1

∗ max
𝑡

𝕝𝑃𝑠𝑘
𝑑 (𝑡)≥1.2𝑃𝑠𝑘,np 

 

where 𝑃𝑠𝑘
𝑑 (𝑡) is the aggregated load profiles for all 

households assigned to the substation 𝑠𝑘 and 𝕝 the usual 
indicator function. To calculate 𝑝𝑠𝑘,overload for the 

substations in the modelled region, an ensemble 
comprising 𝑁 = 500 grid topologies is generated. 

Results 

Three exemplary generated grid topologies along with 
their probability rating are shown in the left column of Fig. 
4 for four of the 15 available substations. 
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To provide a comprehensive overview regarding the 
overload probability of the substations, the middle column 
of Fig. 4 analyses the hourly load probability over a one-
day period. Substations with higher 𝑝𝑠𝑘,overload 

experience, particularly over the hours of peak load (e.g., 
𝑡 = 20), an increased load probability around and above 
the assumed overload threshold of 756 kW. 
The right column of Fig. 4 demonstrates that relying on a 
single best estimate of the grid topology can mislead the 
grid planner regarding the feasibility of the modelled 
distribution grid. To this end, the load of the most likely 
grid topology for a designated hour, i.e., the hour of the 
peak load, 𝑡 = 20, is compared with the load probability 
distribution over the ensemble of generated grid 
topologies. Specifically, the resulting peak load does not 
exceed the overload threshold of the four examined 
substations considering the most likely grid topology only. 
However, there are other possible grid topologies in the 
ensemble where the resulting peak load exceeds the 
overload threshold of the substations. This should be 
considered in a robust planning procedure when only 
imperfect grid knowledge is available. 

CONCLUSION 

In this work, a novel approach is presented to generate an 
ensemble of different, plausible grid topologies using the 
information about the distribution substations and the 
street layout as the only inherent attributes. The advantage 
of an ensemble pays off when evaluating the feasibility of 
the distribution grid. It is demonstrated how relying on the 
most likely estimate of the grid topology can mislead grid 
planners when imperfect grid knowledge is available, 
whereas the ensemble-based framework provides a more 
robust interpretation of the grid feasibility. 
The proposed approach explicitly represents the limits 
implied by the scarcity of the available information by 
modelling the probability of the generated samples using 
domain knowledge. The domain knowledge is encoded via 
two user-defined parameters, and investment costs are 
used as indicator of the plausibility of a grid topology. 
Moving forward, it would be interesting to investigate 
additional design criteria to rate the probability of the 
generated samples. 
There are several, other avenues of future work. For 
example, the grid topology generation mechanism can be 
expanded to the medium-voltage level. In general, there is 
significant potential in the ensemble-based grid topology 
generation, especially if one aims to robustly quantify the 
impact that future penetration levels of distributed RES, 
EV home-chargers and heat pumps can have on current 
power distribution systems. 
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