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Abstract— We consider actuator attacks where an adversary
applies an optimized control sequence to drive the system’s
output away from its nominal value while aiming to remain
undetected. In response, we propose a robust model predictive
defense (RMPD) strategy where an anticipatory defender fore-
sees such an adversary. Our RMPD approach is formulated as
a min-max problem, accounting for the set of the adversary’s
feasible control inputs when available and being conservative
otherwise, allowing for different prediction horizons of the
defender and adversary. We present a novel exact convex
reformulation approach for our RMPD problem with a rect-
angular feasibility region. The novel exact reformulation is
benchmarked against a relaxed formulation using an ellipsoidal
feasibility region of the adversary’s control inputs, which is
solved using the S-procedure. Numerical experiments on a
coupled pendulum validate our RMPD’s effectiveness and show
the exact approach’s improved efficiency in terms of required
control energy compared to the relaxed approach.

Index Terms – robust optimization, nonlinear system, actua-
tor attack

I. INTRODUCTION

Systems and their control can be the object of an ad-
versary, aiming to disturb the controlled system in the
worst possible way. Nowadays, many controlled systems are
cyber-physical ones, like power systems, traffic management
systems, or networked UAVs, and rely on an advanced com-
munication infrastructure [1]. Due to the inherent connection
of the physical parts of the system to the cyber parts, the
system’s attack surface enlarges towards cyberspace, leading
to the conjunction of physical disturbances in the system
triggered by cyber-attacks [2]. A famous example of such an
attack is the Stuxnet worm that manipulated actuators in the
system and falsified the measurements such that the attack
remains hidden [3]. Hence, an adversary could manipulate
actuators in a system by hijacking the devices or modifying
their control inputs, which could result in distortions in the
system or potentially lead to system destabilization.

Related Work. Actuator attacks on power systems are a
widely studied theme, in which an adversary manipulates
loads [4]–[6] aiming to destabilize the power grid’s fre-
quency control loop or the voltage in the power system [7].

In [4], [5], defense strategies are derived utilizing in-
sights on an actuator attack that uses linear system theory
to destabilize the power system. In [6], the adversary is
presented as a state-feedback control law, and a nonconvex
optimization problem is proposed, aiming to find the minimal
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gain destabilizing the power system. The interaction of a
defender and attacker is modeled in [7], where a Stackelberg
game is formulated, yielding strategies for the defender and
attacker in anticipation of each other.

Actuator attacks can also use zero dynamic properties
of the targeted system to disturb it and, if unstable zero
dynamics exist, destabilize it while remaining hidden to
a defender [8]. In general, such an attack design requires
perfect system knowledge of the adversary; however, [9]
proposes a robust zero dynamic attack that copes with
parameter uncertainties in the system, considering the system
output to be known to the adversary. As the defense of
zero dynamic attacks is inherently difficult [10] propose to
optimize the network topology such that an introduced attack
robustness metric, robust w.r.t. H∞ norm, is minimized
while accounting for controllability and observability in the
transient switching phases of the topology. Further, [11]
proposes a defense strategy based on a regret-optimal metric,
accounting for an unknown adversary that performs attacks
subject to a bounded output deviation. In [4], [10], [11],
the defender’s control input is computed as a state-feedback
law. A common concept of defending actuator attacks is to
model those as min-max optimization problems [2], [10],
[11]. This concept is closely related to robust optimal control,
like robust Model-Predictive-Control [12], where a control
decision is derived w.r.t. to a worst-case disturbance.

Contribution. We propose to model both the adversary
and the defender via optimization problems yielding explicit
control sequences. Compared to assuming fixed, specific
control structures this is more versatile and can represent
a variety of possible adversaries. Similar to [4], [10], [11],
we employ robust optimization to determine defenses that
are robust against worst-case attacks. Unlike the previous
work, we do not seek for control parameters but control
sequences, using a prediction horizon in a MPC setting. We
allow for different prediction horizons for the defender and
adversary, which yields an min-max optimization problem
with rectangular feasibility set that is not readily solvable
with conventional methods. Instead, we derive a novel con-
vex reformulation that can be efficiently and exactly solved.
We benchmark our novel approach against a relaxed MPC
scheme with ellipsoidal feasibility set, demonstrating the
effectiveness of our approach in terms of reduced control
energy using a small numerical example.

Outline The Sec. II introduces the system model and the
RMPD problem. In Sec. III the exact and relaxed solution
approaches are presented. The Sec. IV shows the numerical
experiments and Sec.V concludes the work.



II. PROBLEM FORMULATION

Notation. Let Sn denote the set of n by n symmetric
matrices. For such matrices, ∗ means that this part is to be
replaced with its symmetric counterpart. Notations ≤ and ≥
refer to both scalar and matrix inequalities, distinguishable
based on the inequality’s dimension. Notation ⊗ denotes
for the Kronecker product. Notation ei notes the elementary
vector with one at element i. The notation 1n refers to a one-
vector of dimension n. Finally, ∥·∥ notes the Euclidean-norm.

A. System Model

We propose the robust model predictive defense problem
(RMPD) for the defense of a nonlinear causal discrete-time
system. The system model is defined as

xk+1 = f(xk, udk
, uak

)
yk = g(xk).

(1)

Here xk ∈ Rn, yk ∈ Rny , uak
∈ Rna , and udk

∈ Rnd

are vectors of internal states, outputs, adversary inputs, and
defender inputs of the system, respectively. The notation
k ∈ N refers to the current time step. In (1), f : Rn ×
Rnd × Rna → Rn and g : Rn → Rny are continuously
differentiable functions. Please note, the origin is assumed
to be the equilibrium point of the open-loop system, which
means f(0, 0, 0) = 0, and it is assumed that g(0) = 0,
without loss of generality.

The RMPD is applied to the linearized version of the
system (2) that can be obtained by linearizing around the
previous triple lk =

(
xk−1, udk−1

, uak−1

)
at the k time step.

xk+1 = Akxk +Bdk
udk

+Bak
uak

yk = Ckxk
(2)

Here, Ak ∈ Rn×n, Bdk
∈ Rn×nd , Bak

∈ Rn×na , and Ck ∈
Rny×n are computed as

Ak = ∂
∂xf(lk), Bdk

= ∂
∂ud

f(lk), Bak
= ∂

∂ua
f(lk),

Ck = ∂
∂xg(xk).

(3)

B. Robust Model Predictive Defense Problem

The robust model predictive defense problem (RMPD)
is a defender MPC aiming to control the system’s output,
anticipating an adversary to disturb the control output. The
defender and adversary are omniscient, w.r.t. to the oppo-
nents control inputs and feasible set, yielding a worst-case
defense-attack setting and a bilevel optimization. The system
and the RMPD control loop are presented in Fig. 1.

Further, we consider the following assumptions to hold.
Assumption 1. Defender and adversary know the system’s
mathematical model and the internal state vector at all time
steps.
Assumption 2. The defender is omniscient of the adversary’s
objective function, constraints, and previous control inputs.
The adversary knows the defender’s previous control inputs.
Assumption 3. The defender’s control inputs are supposed
to be finite.
Assumption 4. The adversary is assumed to strongly account
for stealthiness.
Assumption 5. The defender’s prediction horizon md is
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Fig. 1. The RMPD control loop applied on a system.

longer than the adversary’s one ma, i.e. md > ma.
According to Assumptions 1 and 2, the defender can calcu-
late the linearized version of the system, i.e., system (2), at
each time step using the linearization triple lk.

The RMPD problem of the defender can be formu-
lated as a bilevel min-max optimization problem, wherein
the adversary is considered as a source of worst-case at-
tack/disturbance - similar to a robust MPC approach.

RMPD in full form:

min
Ud∈Rndmd

max
Ua∈Rnamd ,Y ∈Rnymd

∥Y ∥2 − ca∥Ua∥2 (4a)

Subject to:
1md

⊗ u
¯d

≤ Ud ≤ 1md
⊗ ūd (4b)

1ma
⊗ u

¯a
≤ Ead

Ua ≤ 1ma
⊗ ūa (4c)

Y = Gdk
Ud +Gak

Ua + Fkxk (4d)

The objective of the defender in the RMPD (4) is to
minimize the deviation of the system output Yk from 0 for its
prediction horizon md ∈ N using its control inputs Ud while
maximizing the adversary’s necessary control input Ua to
disturb the system output. The adversary is aiming for the
opposite throughout the defender’s prediction horizon and
weights the stealthiness with parameter ca.

The control input of the defender Ud =[
udk

udk+1
· · · udk+md−1

]T
, Ud ∈ Rndmd is subject

to the hyper-rectangle defined by the bounds u
¯d

∈ Rnd

and ūd ∈ Rnd . The control input of the adversary
Ua =

[
uak

uak+1
· · · uak+md−1

]T
, Ua ∈ Rnamd is for

its prediction horizon ma, subject to the hyper-rectangle
defined by the bounds u

¯a
∈ Rna and ūa ∈ Rna , and

Rna(md−ma) otherwise. The matrix Ead
∈ Rnama×namd is

employed to select the first nama entries of vector Ua.

Ead
=

[
Inama

0
]

(5)

Remark 1. For the defender’s prediction steps extending
the adversary’s prediction horizon, no certainty about the
adversary’s feasibility region exists, as the adversary does
not plan for these. Thus, the defender must assume in the
RMPD that the adversary’s control uak

input for prediction
steps k > ma be unbounded.



The system output Y =
[
yk+1 yk+2 · · · yk+md

]T
,

Y ∈ Rnymd is computed due to the linearization using the
matrices Gdk

, Gak
, Fk, the control inputs and the state vector

in the previous time step xk−1. The matrices Gdk
, Gak

, Fk

are defined as follows and can be computed due to Assump-
tion 1 and 2, as

Gd/ak
=

CkBd/ak
0 · · · 0

CkAkBd/ak
CkBd/ak

· · · 0
...

...
. . .

...
CkA

md−1
k Bd/ak

CkA
md−2
k Bd/ak

· · · CkBd/ak

,

(6)

Fk =


CkAk

CkA
2
k

...
CkA

md

k

. (7)

For simplification we eliminate Yk in (4a) by substitution
with (4d), yielding the following RMPD problem.

RMPD:

min
Ud∈Rndmd

max
Ua∈Rnamd

∥Gdk
Ud +Gak

Ua + Fkxk∥2 − ca∥Ua∥2

(8a)
Subject to:
1md

⊗ u
¯d

≤ Ud ≤ 1md
⊗ ūd (8b)

1ma ⊗ u
¯a

≤ Ead
Ua ≤ 1ma ⊗ ūa (8c)

We assume the adversary to value stealthiness more than
an obvious disturbance of the system output (see Assumption
4), as this would allow an easy detection of an attack. It
follows, the maximization problem of the adversary is convex
as the matrix UT

a (caInamd
− GT

ak
Gak

)Ua is considered
positive definite (PD). The stealthiness value of the adversary
ca must be chosen such that caInamd

≻ GT
ak
Gak

holds.
Due to the bilevel structure of the overall problem, it is not

convex and not directly computationally tractable. Solution
approaches for the problem are provided in the next section.
Remark 2. If the linearized system (2) contains zero-
dynamics, which the adversary can actuate, the adversary
may try to utilize these. Even though the defender cannot
control zero-dynamics, and the output deviation would be
zero, the defender will aim to maximize the necessary control
input of the adversary to utilize these dynamics, as evident
in the objective of the RMPD (8a).
Remark 3. Considering following a trajectory of the output
tk instead of minimizing/disturbing the output of the system,
one can use yk − tk and shift the output of the system to
zero in every time step.
Remark 4. The RMPD problem (8) can be considered
strongly recursively feasible, as defined in [13], because the
feasibility region is independent of some initial state x0 and
the previous control input bounding only the control inputs
explicitly and without coupling of the control inputs.
Remark 5. If the anticipated adversary in the RMPD is
absent, the system output may be deviated.

III. SOLUTION METHODOLOGY

A. Exact convex reformulation of the RMPD

We present the exact convex reformulation of the RMPD
(8) in Theorem 2. First, the following theoretical results are
required to be presented.

Lemma 1. Set V ⊂ Rnl+1 with the following definition is
convex.

V =

{[
Hz − h

zTQz + 2zT q + κ

]
|z ∈ Rnz

}
(9)

where H ∈ Rnl×nz is singular, h ∈ Rnl , Q ∈ Snz is PD,
q ∈ Rnz , and κ ∈ R.

Proof: Let v1 and v2 be two arbitrary members of set
V . This assumption directly implies the existence of vectors
z1 ∈ Rnz z2 ∈ Rnz satisfying next relations:

v1 =

[
Hz1 − h

zT1 Qz1 + 2zT1 q + κ

]
, v2 =

[
Hz2 − h

zT2 Qz2 + 2zT2 q + κ

]
(10)

Suppose θ ∈ [0, 1] is arbitrarily selected. Apparently, it
suffices to prove that (1 − θ)v1 + θv2 belongs to set V to
complete the proof.
Since matrix H is supposed to be singular, its null space is
not empty. This fact enables us to define matrix N ∈ Rnz×nn

as the null matrix of H in which nn is its null dimension
(i.e., HN = 0).
Suppose space Ω ⊂ Rnn is defined as follows:

Ω =

{
w ∈ Rnn |w

TNTQNw + 2wTNT (q + z(θ)) ≤
θ(1− θ)(z1 − z2)

TQ(z1 − z2)

}
(11)

Above, z(θ) := (1− θ)z1 + θz2.
It is apparent that Ω is an ellipsoid since matrix Q is
supposed to be PD. In addition, this ellipsoid is not empty
because origin w = 0 belongs to this space again owing to
Q being a PD matrix and θ(1−θ)(z1−z2)

TQ(z1−z2) ≥ 0.
Since ellipsoid Ω is not empty, there exist vector ŵ ∈ Rnn

located on the boundary of this ellipsoid which results in;

ŵTNTQNŵ + 2ŵTNT (q + z(θ)) =

θ(1− θ)(z1 − z2)
TQ(z1 − z2)

(12)

Now, we define vector ẑ ∈ Rnn as follows:

ẑ = z(θ) +Nŵ (13)

Using (13), one can conclude the next equations:

Hẑ − h = Hz(θ) +HNŵ − h =
Hz(θ)− h = (1− θ)(Hz1 − h) + θ(Hz2 − h)

(14)

ẑTQẑ + 2ẑT q + κ =
z(θ)TQz(θ) + 2qT z(θ) + κ+(

ŵTNTQNŵ + 2ŵTNT (q + z(θ))
)
=(

z(θ)TQz(θ) + θ(1− θ)(z1 − z2)
TQ(z1 − z2)

)
+

2qT z(θ) + κ =
(1− θ)

(
zT1 Qz1 + 2zT1 q + κ

)
+ θ

(
zT2 Qz2 + 2zT2 q + κ

)
(15)



Using (14) and (15), the following equation can be obtained:[
Hẑ − h

ẑTQẑ + 2ẑT q + κ

]
=

(1− θ)

[
Hz1 − h

zT1 Qz1 + 2zT1 q + κ

]
+ θ

[
Hz2 − h

zT2 Qz2 + 2zT2 q + κ

]
=

(1− θ)v1 + θv2
(16)

According to (16), point (1−θ)v1+θv2 belongs to V which
terminates the proof.

Theorem 1. Suppose H ∈ Rnl×nz is singular, h ∈ Rnl ,
Q ∈ Snz is PD, q ∈ Rnz , and κ ∈ R. The set defined by
zTQz + 2zT q + κ > 0 over space R = {z ∈ Rn−z|Hz ≥
h} has non-empty interior if and only if there exists vector
p ≤ 0 ∈ Rnl satisfying the following LMI:[

Q 1
2H

T p+ q
∗ κ− pTh

]
≥ 0. (17)

Proof: First, we prove the forward part of the theorem
through considering zTQz + 2zT q + κ > 0 for all z ∈ R.
Let set V be defined the same as given in the statement of
Lemma 1 and W ⊂ Rnl+1 be defined as follows:

W =

{[
w1

w2

]
|w1 ∈ Rnl

+ , w2 ≤ 0

}
(18)

According to the first hypothesis of the proof, it can be
simply concluded that V ∩ W = ∅. This fact enables us
to conclude the existence of a hyperplane that separates
these convex spaces based on the hyperplane separation
theorem. Recall, V is convex, cf. Lemma 1. Let P ={[

u1

u2

]
∈ Rnl+1|pT1 u1 + p2u2 = p3

}
be that separating hy-

perplane (in which p1 ∈ Rnl , p2 ∈ R, and p3 ∈ R are finite
coefficients of the hyperplane) which results in:

∀
[
u1

u2

]
∈ W : pT1 u1 + p2u2 ≥ p3 (19)

∀
[
u1

u2

]
∈ V : pT1 u1 + p2u2 ≥ p3 (20)

Using (19), we will have:

∀i ∈ {1, ..., nl} : u1 = ∞ei, u2 = 0 ∈ W → p1i ≥ 0
(21)

u1 = 0, u2 = −∞ ∈ W → p2 ≤ 0 (22)

u1 = 0, u2 = 0 ∈ W → p3 ≤ 0 (23)

Based on (21)-(23), it can be induced that p1 ≥ 0, p2 ≤ 0,
and p3 ≤ 0. Substituting these results in relation (20), the
next equations yield:

∀z ∈ Rnz : pT1 (Hz−h)+p2(z
TQz+2qT z+κ) ≤ p3 (24)

If p2 = 0, then equation (24) leads to the following relation:

∀z ∈ Rnz : pT1 (Hz − h) ≤ p3 (25)

Since set R is supposed to have non-empty interior, there
exists ẑ ∈ Rnz such that Hẑ > h. Using this fact, p1 ≥ 0,
p3 ≤ 0, and equation (25), one can obtain:

pT1 (Hẑ − h) ≤ p3 ⇒ p1 = 0, p3 = 0 (26)

Thus, p1 = 0 and p3 = 0 if p2 = 0. This result contradicts
the existence of separating hyperplane P . Therefore,
p2 < 0 which results in the following equation considering
p = p1

p2
≤ 0:

∀z ∈ Rnz :

[
z
1

]T[
Q 1

2Hp+ q
∗ κ− pTh

][
z
1

]
≥ 0 (27)

It is apparent that equation (27) proves the forward part of
the Theorem 1.
In order to prove the reverse part of this theorem, suppose
there exists a non-positive vector p ∈ Rnl fulfilling LMI
(17). Using this assumption, we will have:

∀z ∈ Rnz :

[
z
1

]T[
Q 1

2H
T p+ q

∗ κ− pTh

][
z
1

]
≥ 0 (28)

∀z ∈ Rnz : (zTQz + 2qT z + κ) ≥ −pT (Hz − h) (29)

∀z ∈ Rnz : Hz − h ≥ 0 → zTQz + 2qT z + κ > 0 (30)

It is obvious that equation (30) proves the reverse part of the
theorem.

Finally, the exact convex reformulation of the RMPD is
presented in the next theorem.

Theorem 2. The bilevel optimization problem (8) can be
equivalently rewritten as

min
Ud∈Rndmd ,p∈R2nama ,τ∈R

τ (31a)

Subject to:[
Q 1

2H
Tp+ q

∗ κ− pTh

]
≥ 0;where (31b)

Q = caInamd
−GT

ak
Gak

, q = −GT
ak
(Gdk

Ud + Fkxk)

H =

[
Ea

−Ea

]
, h =

[
1ma ⊗ u

¯ a

−1ma
⊗ ūa

]
κ = −∥Gdk

Ud + Fkxk∥2 + τ

1md
⊗ u

¯ d ≤ Ud ≤ 1md
⊗ ūd (31c)

p ≤ 0. (31d)

Proof: Matrix Q = (caInamd
− GT

ak
Gak

) has been
supposed to be positive definite in Sec. II-B. Added to this,
point 1

2 (1md
⊗ūa+1md

⊗u
¯a
) belongs to the interior of space

R = {Ua ∈ Rn−z|HUa ≥ h} that means this space has
non-empty interior. Moreover, matrix H =

[
Ea − Ea

]T
is

singular. Therefore, constraint (31b) exacts the next relations
based on Theorem 1:
∀Ua ∈ Rnamd : 1ma

⊗ ūa ≤ EaUa ≤ 1ma
⊗ ūa →

∥Gdk
Ud +Gak

Ua + Fkxk∥2 − ca∥Ua∥2 ≤ τ
(32)

τ = max
Ua∈R

(
∥Gdk

Ud +Gak
Ua + Fkxk∥2 − ca∥Ua∥2

)
= τ

(33)
Regarding (33), problems (8) and (31) are equivalent.

It is worth mentioning that problem (31) is convex and
effectively solvable using standard methods.

Note, the reformulation approach by dualizing the adver-
sary lower level in (8) leads to a single-level minimization
problem; however, it does not result in a convex optimization



problem due to the multiplication of dual variables of the
adversary problem and primal variables of the defender.

B. Relaxed convex reformulation of the RMPD

Next to our novel convex reformulation of (8) in Sec. III-
A, we present a relaxed convex reformulation approach that
uses traditional reformulation techniques, in particular the S-
procedure. The idea of the relaxation approach presented is
relaxing the control input constraint on the adversary in (8c).
For k+m ≤ ma the relaxation replaces the hyper-rectangle
of the adversary’s feasible region Ha by its outer Löwner-
John ellipsoid Ea. For ma < k +m ≤ md the control input
Ua is also bounded by the outer Löwner-John ellipsoid of
Ha, yielding a less conservative relaxation, as the adversary
does not plan for these prediction steps, see Remark 1.

First, we present the Löwner-John ellipsoid containing
hyper-rectangle Ha = Conv({Ua ∈ Rnamd |1md

⊗ u
¯a

≤
Ua ≤ 1md

⊗ ūa}) in Lemma 2. Second, the relaxed problem
will be converted to a convex problem through Theorem 3.
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Fig. 2. Representation of the proof of Lemma 2; the linear transformation
T and the centering C of Ha to achieve HS are shown in green.

Lemma 2. The minimal volume ellipsoid Ea defined below
is the outer Löwner-John ellipsoid that includes the hyper-
rectangle Ha = Conv({Ua ∈ Rnamd |1md

⊗ u
¯ a ≤ Ua ≤

1md
⊗ ūa}).

Ea = {Ua ∈ Rnamd | ∥RaUa + ba∥ ≤ 1}

where matrices R ∈ Snamd×namd and b ∈ Rnamd are
defined below:

Ra = (
√
namd)

−1 diag(t)

∀i ∈ {1, . . . , namd} : ba,i = −(
√
namd)

−1 ti ci

∀i ∈ {1, . . . , namd} : ci =
ua,i + ua,i

2

∀i ∈ {1, . . . , namd} : ti = (ua,i − ci)
−1

Proof: The key idea of the proof is drawn in Fig. 2. The
outer Löwner-John ellipsoid ES of a centred and symmetric
hyper-rectangle with corners HS = {11,−11, . . . ,±1namd

}
has RS =

√
namdInamd

, bS = 0, due to symmetry. Hence,
we need to find a linear transformation T of Ha edges and
a shift in coordinates of the center C of Ha to the origin to
yield HS , i.e. an affine transformation F . Then, we apply
F−1 on ES and yield Ea.

The center C of Ha is given by the mean distance of each
of its edges, thus ci =

ua,i+u
¯ a,i

2 ,∀i ∈ {1, ..., namd}. The

coordinate shift yields the centered version of Ha, named
HC . To scale the corner points of HC it is sufficient to look
at one coordinate of the corner points uC

i , u
C
i = ui − ci,

due to symmetry. The scaling tCi of tCi u
C
i = 1 implies in

the original coordinates of Ha that ti = (ua,i − ci)
−1. It is

evident, that the scaling matrix T = diag(t) is invertible and
bijective, as T−1 exists, because ua,i−ci ̸= 0, due to ua,i >
u
¯a,i

. Thus the outer Löwner-John ellipsoid ES axis RS must
be scaled with T to achieve Ra = (

√
namdInamd

)−1diag(t),
further results ba = −Ra(C + bS) of Ea, recall bS = 0.

Theorem 3. The relaxed convex reformulation of the bilevel
problem (8) is

min
Ud∈Rndmd ,τ∈R,σ∈R+

0

τ (34a)

Subject to:[
GT

ak
Gak

− caInamd

1
2G

T
ak
(Gdk

Ud + Fkxk)

∗ ∥Gdk
Ud + Fkxk∥2 − τ

]
≤

σ

[
Ra Raba
∗ bTa ba − 1

] (34b)

1md
⊗ u

¯ d ≤ Ud ≤ 1md
⊗ ūd. (34c)

Proof: According to S-procedure [14], constraint (34b)
is equivalent to the following equation.

∀Ua ∈ Ea : ∥Gdk
Ud +Gak

Ua + Fkxk∥2 − ca∥Ua∥2 ≤ τ
(35)

Since τ is a decision variable in problem (34) that is desired
to be minimized under only one constraint (34b), equation
(35) leads to the following one:

τ = max
Ua∈Ea

(
∥Gdk

Ud +Gak
Ua + Fkxk∥2 − ca∥Ua∥2

)
(36)

On the other hand, Lemma 2 shows that Ha ⊂ Ea which
results in:

max
Ua∈Ha

(
∥Gdk

Ud +Gak
Ua + Fkxk∥2 − ca∥Ua∥2

)
≤ τ

(37)
Based on (37), the optimal solution to LMI problem (34)
will be a relaxed solution to optimization problem (8).

IV. NUMERICAL EXPERIMENTS

We investigate the exact (31) and relaxed ellipsoidal
(34) reformulation approaches of the RMPD (8) on two
pendulums coupled by a spring. With the angular dis-
placement θi, the swing equation for mass i derives
as mlθ̈i = −mg sin θi − kSl sin (θi − θj ̸=i) + 1

lMi +
cos (θi)Fi, i, j ∈ {1, 2}. The states of the system derive
as x = (θ1, θ̇1, θ2, θ̇2)

T with x0 = (−π
8 , 0,

π
4 , 0)

T. The
system’s output vector is the angular displacement of the
masses Y = (θ1, θ2). The setup is shown in Fig. 3.

The defender controls the momentum Ud,1 := M1, Ud,2 :=
M2 at the mounting, with limits of ± 2Nm, and has a
prediction horizon md = 5. The adversary controls the forces
Ua,1 := F1, Ua,2 := F2 at the masses, with limits of ± 0.2N,
and has a prediction horizon of ma = 3. At initial, the
defender and attacker control input is set to zero. Further,



𝑈𝑑,1 ≔ 𝑀1 𝑈𝑑,2 ≔ 𝑀2

𝑈𝑎,2 ≔ 𝐹2𝑈𝑎,1 ≔ 𝐹1

𝑚

𝑙𝑙

𝑘𝑆

𝜃1 − 𝜃2

𝜃1 𝜃2

𝑚

Fig. 3. Numerical example of two coupled pendulums, the defender applies
momentum at the mountings, the adversary applies force on the masses.

the system is discretized using the forward Euler method
with time step 0.05 s, and the RMPD-controlled system is
simulated for 2 s. Further, the length of the rods l is 0.5m,
the masses m weigh 1 kg, the spring stiffness kS is set to
1N
m , and the stealthiness parameter of the adversary ca to 1.

Fig. 4. Time series of the coupled pendulums from Fig. 3 under RMPD
control: A) the two angles, B) inputs Ud of the defender, C), inputs Ua of
the attacker. The subscripts exact refers to solutions of the reformulation (31)
and relaxed to solutions of (34). Note that lines are often very similar (thus
plotted often on top of each other), but that the defender’s control sequences
computed by the exact reformulation approach require less energy.

In Fig. 4 A), the output of the RMPD-controlled system
under both reformulation approaches is shown to decline
to Y = (0, 0), the stable equilibrium point of the coupled
pendulums. Further, the exact (31) and relaxed ellipsoidal
(34) reformulation approach of the RMPD lead to the same
trajectory of θ1, θ2, indicating the suitability of both ap-
proaches to counteract the actuator attack successfully.

The exact reformulation approach needs less energy to
control the system compared to the relaxed one, as shown in
Fig. 4 B) for Ud,1, especially in the time 0.5-1 s. The relaxed
approach’s control sequence requires 2.56% more energy
than the exact one to achieve the same output trajectory.
For the control input Ud,2, the relaxed approach needs only
0.04% more control energy. Hence, this shows the decrease
in efficiency yield by the ellipsoidal relaxation approach.

The adversary’s control inputs Ua, shown in Fig.4 C), are
nearly equivalent for both reformulation approaches, showing
the same actuator attack strategies.

V. CONCLUSION

We derived a robust model predictive defense problem
against stealthy actuator attacks, where the omniscient ad-
versary has a smaller prediction horizon than the defender.
For this min-max problem, we provide a novel and exact
reformulation approach that yields a convex optimization
problem. We benchmark the exact reformulation against a
relaxed one that approximates the feasible region of the
adversary by an ellipsoid and assumes the same prediction
horizon for the adversary as for the defender. The relaxed
problem is solved using the S-procedure. The numerical
results on a coupled pendulum show the effectiveness and
efficiency of our novel exact reformulation approach to
counteract the actuator attack while needing less control
energy compared to the ellipsoidal relaxation. Additionally,
it is emphasized that the relaxation can only be used when
assuming the same prediction horizons of adversary and
defender. Future work could consider an RMPD accounting
for limited information or an adversary omitting stealthiness.
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